|
|
|
|
# Copyright (c) [2024] []
|
|
|
|
|
#
|
|
|
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
|
|
# of this software and associated documentation files (the "Software"), to deal
|
|
|
|
|
# in the Software without restriction, including without limitation the rights
|
|
|
|
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
|
|
# copies of the Software, and to permit persons to whom the Software is
|
|
|
|
|
# furnished to do so, subject to the following conditions:
|
|
|
|
|
#
|
|
|
|
|
# The above copyright notice and this permission notice shall be included in all
|
|
|
|
|
# copies or substantial portions of the Software.
|
|
|
|
|
#
|
|
|
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
|
|
|
# SOFTWARE.
|
|
|
|
|
|
|
|
|
|
import warnings
|
|
|
|
|
from argparse import ArgumentParser
|
|
|
|
|
from sys import getsizeof
|
|
|
|
|
from timeit import default_timer as timer
|
|
|
|
|
|
|
|
|
|
# use numpy number of threads one
|
|
|
|
|
try:
|
|
|
|
|
from threadpoolctl import threadpool_info, threadpool_limits
|
|
|
|
|
|
|
|
|
|
user_api = threadpool_info()["user_api"]
|
|
|
|
|
threadpool_limits(limits=1, user_api=user_api)
|
|
|
|
|
except:
|
|
|
|
|
print("Warning: threadpoolctl could not make numpy use single thread!")
|
|
|
|
|
|
|
|
|
|
from pickle import dump, load
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import sisl
|
|
|
|
|
from mpi4py import MPI
|
|
|
|
|
from numpy.linalg import inv
|
|
|
|
|
from scipy.special import roots_legendre
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
|
tqdm_imported = True
|
|
|
|
|
except:
|
|
|
|
|
print("Please install tqdm for nice progress bar.")
|
|
|
|
|
tqdm_imported = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Pauli matrices
|
|
|
|
|
TAU_X = np.array([[0, 1], [1, 0]])
|
|
|
|
|
TAU_Y = np.array([[0, -1j], [1j, 0]])
|
|
|
|
|
TAU_Z = np.array([[1, 0], [0, -1]])
|
|
|
|
|
TAU_0 = np.array([[1, 0], [0, 1]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# list of accepted input parameters
|
|
|
|
|
ACCEPTED_INPUTS = [
|
|
|
|
|
"infile",
|
|
|
|
|
"outfile",
|
|
|
|
|
"scf_xcf_orientation",
|
|
|
|
|
"ref_xcf_orientations",
|
|
|
|
|
"kset",
|
|
|
|
|
"kdirs",
|
|
|
|
|
"ebot",
|
|
|
|
|
"eset",
|
|
|
|
|
"esetp",
|
|
|
|
|
"parallel_solver_for_Gk",
|
|
|
|
|
"padawan_mode",
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
DEFAULT_ARGUMENTS = dict(
|
|
|
|
|
infile=None,
|
|
|
|
|
outfile=None,
|
|
|
|
|
scf_xcf_orientation=np.array([0, 0, 1]),
|
|
|
|
|
ref_xcf_orientations=[
|
|
|
|
|
dict(o=np.array([1, 0, 0]), vw=[np.array([0, 1, 0]), np.array([0, 0, 1])]),
|
|
|
|
|
dict(o=np.array([0, 1, 0]), vw=[np.array([1, 0, 0]), np.array([0, 0, 1])]),
|
|
|
|
|
dict(o=np.array([0, 0, 1]), vw=[np.array([1, 0, 0]), np.array([0, 1, 0])]),
|
|
|
|
|
],
|
|
|
|
|
kset=2,
|
|
|
|
|
kdirs="xyz",
|
|
|
|
|
ebot=None,
|
|
|
|
|
eset=42,
|
|
|
|
|
esetp=1000,
|
|
|
|
|
parallel_solver_for_Gk=False,
|
|
|
|
|
padawan_mode=True,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def commutator(a, b):
|
|
|
|
|
"""Shorthand for commutator.
|
|
|
|
|
|
|
|
|
|
Commutator of two matrices in the mathematical sense.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
a : np.array_like
|
|
|
|
|
The first matrix
|
|
|
|
|
b : np.array_like
|
|
|
|
|
The second matrix
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
np.array_like
|
|
|
|
|
The commutator of a and b
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
return a @ b - b @ a
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# define some useful functions
|
|
|
|
|
def hsk(H, ss, sc_off, k=(0, 0, 0)):
|
|
|
|
|
"""Speed up Hk and Sk generation.
|
|
|
|
|
|
|
|
|
|
Calculates the Hamiltonian and the Overlap matrix at a given k point. It is faster that the sisl version.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
H : np.array_like
|
|
|
|
|
Hamiltonian in spin box form
|
|
|
|
|
ss : np.array_like
|
|
|
|
|
Overlap matrix in spin box form
|
|
|
|
|
sc_off : list
|
|
|
|
|
supercell indexes of the Hamiltonian
|
|
|
|
|
k : tuple, optional
|
|
|
|
|
The k point where the matrices are set up. Defaults to (0, 0, 0)
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
np.array_like
|
|
|
|
|
Hamiltonian at the given k point
|
|
|
|
|
np.array_like
|
|
|
|
|
Overlap matrix at the given k point
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# this two conversion lines are from the sisl source
|
|
|
|
|
k = np.asarray(k, np.float64)
|
|
|
|
|
k.shape = (-1,)
|
|
|
|
|
|
|
|
|
|
# this generates the list of phases
|
|
|
|
|
phases = np.exp(-1j * 2 * np.pi * k @ sc_off.T)
|
|
|
|
|
|
|
|
|
|
# phases applied to the hamiltonian
|
|
|
|
|
HK = np.einsum("abc,a->bc", H, phases)
|
|
|
|
|
SK = np.einsum("abc,a->bc", ss, phases)
|
|
|
|
|
|
|
|
|
|
return HK, SK
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def make_kset(dirs="xyz", NUMK=20):
|
|
|
|
|
"""Simple k-grid generator to sample the Brillouin zone.
|
|
|
|
|
|
|
|
|
|
Depending on the value of the dirs
|
|
|
|
|
argument k sampling in 1,2 or 3 dimensions is generated.
|
|
|
|
|
If dirs argument does not contain either of x, y or z
|
|
|
|
|
a kset of a single k-pont at the origin is returned. The total number of k points is the NUMK**(dimensions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
dirs : str, optional
|
|
|
|
|
Directions of the k points in the Brillouin zone. They are the three lattice vectors. Defaults to "xyz"
|
|
|
|
|
NUMK : int, optional
|
|
|
|
|
The number of k points in a direction. Defaults to 20
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
np.array_like
|
|
|
|
|
An array of k points that uniformly sample the Brillouin zone in the given directions
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# if there is no xyz in dirs return the Gamma point
|
|
|
|
|
if not (sum([d in dirs for d in "xyz"])):
|
|
|
|
|
return np.array([[0, 0, 0]])
|
|
|
|
|
|
|
|
|
|
kran = len(dirs) * [np.linspace(0, 1, NUMK, endpoint=False)]
|
|
|
|
|
mg = np.meshgrid(*kran)
|
|
|
|
|
dirsdict = dict()
|
|
|
|
|
|
|
|
|
|
for d in enumerate(dirs):
|
|
|
|
|
dirsdict[d[1]] = mg[d[0]].flatten()
|
|
|
|
|
for d in "xyz":
|
|
|
|
|
if not (d in dirs):
|
|
|
|
|
dirsdict[d] = 0 * dirsdict[dirs[0]]
|
|
|
|
|
kset = np.array([dirsdict[d] for d in "xyz"]).T
|
|
|
|
|
|
|
|
|
|
return kset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def make_contour(emin=-20, emax=0.0, enum=42, p=150):
|
|
|
|
|
"""A more sophisticated contour generator.
|
|
|
|
|
|
|
|
|
|
Calculates the parameters for the complex contour integral. It uses the
|
|
|
|
|
Legendre-Gauss quadrature method. It returns a class that contains
|
|
|
|
|
the information for the contour integral.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
emin : int, optional
|
|
|
|
|
Energy minimum of the contour. Defaults to -20
|
|
|
|
|
emax : float, optional
|
|
|
|
|
Energy maximum of the contour. Defaults to 0.0, so the Fermi level
|
|
|
|
|
enum : int, optional
|
|
|
|
|
Number of sample points along the contour. Defaults to 42
|
|
|
|
|
p : int, optional
|
|
|
|
|
Shape parameter that describes the distribution of the sample points. Defaults to 150
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
ccont
|
|
|
|
|
Contains all the information for the contour integral
|
|
|
|
|
"""
|
|
|
|
|
x, wl = roots_legendre(enum)
|
|
|
|
|
R = (emax - emin) / 2 # radius
|
|
|
|
|
z0 = (emax + emin) / 2 # center point
|
|
|
|
|
y1 = -np.log(1 + np.pi * p) # lower bound
|
|
|
|
|
y2 = 0 # upper bound
|
|
|
|
|
|
|
|
|
|
y = (y2 - y1) / 2 * x + (y2 + y1) / 2
|
|
|
|
|
phi = (np.exp(-y) - 1) / p # angle parameter
|
|
|
|
|
ze = z0 + R * np.exp(1j * phi) # complex points for path
|
|
|
|
|
we = -(y2 - y1) / 2 * np.exp(-y) / p * 1j * (ze - z0) * wl
|
|
|
|
|
|
|
|
|
|
# just an empty container class
|
|
|
|
|
class ccont:
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
cont = ccont()
|
|
|
|
|
cont.R = R
|
|
|
|
|
cont.z0 = z0
|
|
|
|
|
cont.ze = ze
|
|
|
|
|
cont.we = we
|
|
|
|
|
cont.enum = enum
|
|
|
|
|
|
|
|
|
|
return cont
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def tau_u(u):
|
|
|
|
|
"""Pauli matrix in direction u.
|
|
|
|
|
|
|
|
|
|
Returns the vector u in the basis of the Pauli matrices.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
u : list or np.array_like
|
|
|
|
|
The direction
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
np.array_like
|
|
|
|
|
Arbitrary direction in the base of the Pauli matrices
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# u is force to be of unit length
|
|
|
|
|
u = u / np.linalg.norm(u)
|
|
|
|
|
|
|
|
|
|
return u[0] * TAU_X + u[1] * TAU_Y + u[2] * TAU_Z
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#
|
|
|
|
|
def crossM(u):
|
|
|
|
|
"""Definition for the cross-product matrix.
|
|
|
|
|
|
|
|
|
|
It acts as a cross product with vector u.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
u : list or np.array_like
|
|
|
|
|
The second vector in the cross product
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
np.array_like
|
|
|
|
|
The matrix that represents teh cross product with a vector
|
|
|
|
|
"""
|
|
|
|
|
return np.array([[0, -u[2], u[1]], [u[2], 0, -u[0]], [-u[1], u[0], 0]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def RotM(theta, u, eps=1e-10):
|
|
|
|
|
"""Definition of rotation matrix with angle theta around direction u.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
theta : float
|
|
|
|
|
The angle of rotation
|
|
|
|
|
u : np.array_like
|
|
|
|
|
The rotation axis
|
|
|
|
|
eps : float, optional
|
|
|
|
|
Cutoff for small elements in the resulting matrix. Defaults to 1e-10
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
np.array_like
|
|
|
|
|
The rotation matrix
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
u = u / np.linalg.norm(u)
|
|
|
|
|
|
|
|
|
|
M = (
|
|
|
|
|
np.cos(theta) * np.eye(3)
|
|
|
|
|
+ np.sin(theta) * crossM(u)
|
|
|
|
|
+ (1 - np.cos(theta)) * np.outer(u, u)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# kill off small numbers
|
|
|
|
|
M[abs(M) < eps] = 0.0
|
|
|
|
|
return M
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def RotMa2b(a, b, eps=1e-10):
|
|
|
|
|
"""Definition of rotation matrix rotating unit vector a to unit vector b.
|
|
|
|
|
|
|
|
|
|
Function returns array R such that R @ a = b holds.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
a : np.array_like
|
|
|
|
|
First vector
|
|
|
|
|
b : np.array_like
|
|
|
|
|
Second vector
|
|
|
|
|
eps : float, optional
|
|
|
|
|
Cutoff for small elements in the resulting matrix. Defaults to 1e-10
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
np.array_like
|
|
|
|
|
The rotation matrix with the above property
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
v = np.cross(a, b)
|
|
|
|
|
c = a @ b
|
|
|
|
|
M = np.eye(3) + crossM(v) + crossM(v) @ crossM(v) / (1 + c)
|
|
|
|
|
|
|
|
|
|
# kill off small numbers
|
|
|
|
|
M[abs(M) < eps] = 0.0
|
|
|
|
|
return M
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def read_siesta_emin(eigfile):
|
|
|
|
|
"""It reads the lowest energy level from the siesta run.
|
|
|
|
|
|
|
|
|
|
It uses the .EIG file from siesta that contains the eigenvalues.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
eigfile : str
|
|
|
|
|
The path to the .EIG file
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
float
|
|
|
|
|
The energy minimum
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# read the file
|
|
|
|
|
eigs = eigSileSiesta(eigfile).read_data()
|
|
|
|
|
|
|
|
|
|
return eigs.min()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def int_de_ke(traced, we):
|
|
|
|
|
"""It numerically integrates the traced matrix.
|
|
|
|
|
|
|
|
|
|
It is a wrapper from numpy.trapz and it contains the
|
|
|
|
|
relevant constants to calculate the energy integral from
|
|
|
|
|
equation 93 or 96.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
traced : np.array_like
|
|
|
|
|
The trace of a matrix or a matrix product
|
|
|
|
|
we : float
|
|
|
|
|
The weight of a point on the contour
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
float
|
|
|
|
|
The energy calculated from the integral formula
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
return np.trapz(-1 / np.pi * np.imag(traced * we))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def onsite_projection(matrix, idx1, idx2):
|
|
|
|
|
"""It produces the slices of a matrix for the on site projection.
|
|
|
|
|
|
|
|
|
|
The slicing is along the last two axes as these contains the orbital indexing.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
matrix : (..., :, :) np.array_like
|
|
|
|
|
Some matrix
|
|
|
|
|
idx : np.array_like
|
|
|
|
|
The indexes of the orbitals
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
np.array_like
|
|
|
|
|
Reduced matrix based on the projection
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
return matrix[..., idx1, :][..., idx2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def calc_Vu(H, Tu):
|
|
|
|
|
"""Calculates the local perturbation in case of a spin rotation.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
H : (NO, NO) np.array_like
|
|
|
|
|
Hamiltonian
|
|
|
|
|
Tu : (NO, NO) array_like
|
|
|
|
|
Rotation around u
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Vu1 : (NO, NO) np.array_like
|
|
|
|
|
First order perturbed matrix
|
|
|
|
|
Vu2 : (NO, NO) np.array_like
|
|
|
|
|
Second order perturbed matrix
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
Vu1 = 1j / 2 * commutator(H, Tu) # equation 100
|
|
|
|
|
Vu2 = 1 / 8 * commutator(commutator(Tu, H), Tu) # equation 100
|
|
|
|
|
|
|
|
|
|
return Vu1, Vu2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def build_hh_ss(dh):
|
|
|
|
|
"""It builds the Hamiltonian and Overlap matrix from the sisl.dh class.
|
|
|
|
|
|
|
|
|
|
It restructures the data in the SPIN BOX representation, where NS is
|
|
|
|
|
the number of supercells and NO is the number of orbitals.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
dh : sisl.physics.Hamiltonian
|
|
|
|
|
Hamiltonian read in by sisl
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
hh : (NS, NO, NO) np.array_like
|
|
|
|
|
Hamiltonian in SPIN BOX representation
|
|
|
|
|
ss : (NS, NO, NO) np.array_like
|
|
|
|
|
Overlap matrix in SPIN BOX representation
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
NO = dh.no # shorthand for number of orbitals in the unit cell
|
|
|
|
|
|
|
|
|
|
# preprocessing Hamiltonian and overlap matrix elements
|
|
|
|
|
h11 = dh.tocsr(dh.M11r)
|
|
|
|
|
h11 += dh.tocsr(dh.M11i) * 1.0j
|
|
|
|
|
h11 = h11.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
|
|
|
|
|
|
|
|
|
|
h22 = dh.tocsr(dh.M22r)
|
|
|
|
|
h22 += dh.tocsr(dh.M22i) * 1.0j
|
|
|
|
|
h22 = h22.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
|
|
|
|
|
|
|
|
|
|
h12 = dh.tocsr(dh.M12r)
|
|
|
|
|
h12 += dh.tocsr(dh.M12i) * 1.0j
|
|
|
|
|
h12 = h12.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
|
|
|
|
|
|
|
|
|
|
h21 = dh.tocsr(dh.M21r)
|
|
|
|
|
h21 += dh.tocsr(dh.M21i) * 1.0j
|
|
|
|
|
h21 = h21.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
|
|
|
|
|
|
|
|
|
|
sov = (
|
|
|
|
|
dh.tocsr(dh.S_idx)
|
|
|
|
|
.toarray()
|
|
|
|
|
.reshape(NO, dh.n_s, NO)
|
|
|
|
|
.transpose(0, 2, 1)
|
|
|
|
|
.astype("complex128")
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Reorganization of Hamiltonian and overlap matrix elements to SPIN BOX representation
|
|
|
|
|
U = np.vstack(
|
|
|
|
|
[np.kron(np.eye(NO, dtype=int), [1, 0]), np.kron(np.eye(NO, dtype=int), [0, 1])]
|
|
|
|
|
)
|
|
|
|
|
# This is the permutation that transforms ud1ud2 to u12d12
|
|
|
|
|
# That is this transforms FROM SPIN BOX to ORBITAL BOX => U
|
|
|
|
|
# the inverse transformation is U.T u12d12 to ud1ud2
|
|
|
|
|
# That is FROM ORBITAL BOX to SPIN BOX => U.T
|
|
|
|
|
|
|
|
|
|
# From now on everything is in SPIN BOX!!
|
|
|
|
|
hh, ss = np.array(
|
|
|
|
|
[
|
|
|
|
|
U.T
|
|
|
|
|
@ np.block([[h11[:, :, i], h12[:, :, i]], [h21[:, :, i], h22[:, :, i]]])
|
|
|
|
|
@ U
|
|
|
|
|
for i in range(dh.lattice.nsc.prod())
|
|
|
|
|
]
|
|
|
|
|
), np.array(
|
|
|
|
|
[
|
|
|
|
|
U.T
|
|
|
|
|
@ np.block(
|
|
|
|
|
[[sov[:, :, i], sov[:, :, i] * 0], [sov[:, :, i] * 0, sov[:, :, i]]]
|
|
|
|
|
)
|
|
|
|
|
@ U
|
|
|
|
|
for i in range(dh.lattice.nsc.prod())
|
|
|
|
|
]
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return hh, ss
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def setup_pairs_and_magnetic_entities(
|
|
|
|
|
magnetic_entities, pairs, dh, simulation_parameters
|
|
|
|
|
):
|
|
|
|
|
"""It creates the complete structure of the dictionaries and fills some basic data.
|
|
|
|
|
|
|
|
|
|
It creates orbital indexes, spin box indexes, coordinates and tags for magnetic entities.
|
|
|
|
|
Furthermore it creates the structures for the energies, the perturbed potentials and
|
|
|
|
|
the Greens function calculation. It dose the same for the pairs.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
pairs : dict
|
|
|
|
|
Contains the initial pair information
|
|
|
|
|
magnetic_entities : dict
|
|
|
|
|
Contains the initial magnetic entity information
|
|
|
|
|
dh : sisl.physics.Hamiltonian
|
|
|
|
|
Hamiltonian read in by sisl
|
|
|
|
|
simulation_parameters : dict
|
|
|
|
|
A set of parameters from the simulation
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
pairs : dict
|
|
|
|
|
Contains the initial information and the complete structure
|
|
|
|
|
magnetic_entities : dict
|
|
|
|
|
Contains the initial information and the complete structure
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# for every site we have to store 3 Greens function (and the associated _tmp-s) in the 3 reference directions
|
|
|
|
|
for mag_ent in magnetic_entities:
|
|
|
|
|
parsed = parse_magnetic_entity(dh, **mag_ent) # parse orbital indexes
|
|
|
|
|
mag_ent["orbital_indices"] = parsed
|
|
|
|
|
mag_ent["spin_box_indices"] = blow_up_orbindx(
|
|
|
|
|
parsed
|
|
|
|
|
) # calculate spin box indexes
|
|
|
|
|
# if orbital is not set use all
|
|
|
|
|
if "l" not in mag_ent.keys():
|
|
|
|
|
mag_ent["l"] = "all"
|
|
|
|
|
|
|
|
|
|
# tag creation for one atom
|
|
|
|
|
if isinstance(mag_ent["atom"], int):
|
|
|
|
|
mag_ent["tags"] = [
|
|
|
|
|
f"[{mag_ent['atom']}]{dh.atoms[mag_ent['atom']].tag}({mag_ent['l']})"
|
|
|
|
|
]
|
|
|
|
|
mag_ent["xyz"] = [dh.xyz[mag_ent["atom"]]]
|
|
|
|
|
# tag creation for more atoms
|
|
|
|
|
if isinstance(mag_ent["atom"], list):
|
|
|
|
|
mag_ent["tags"] = []
|
|
|
|
|
mag_ent["xyz"] = []
|
|
|
|
|
# iterate over atoms
|
|
|
|
|
for atom_idx in mag_ent["atom"]:
|
|
|
|
|
mag_ent["tags"].append(
|
|
|
|
|
f"[{atom_idx}]{dh.atoms[atom_idx].tag}({mag_ent['l']})"
|
|
|
|
|
)
|
|
|
|
|
mag_ent["xyz"].append(dh.xyz[atom_idx])
|
|
|
|
|
|
|
|
|
|
# calculate size for Greens function generation
|
|
|
|
|
spin_box_shape = len(mag_ent["spin_box_indices"])
|
|
|
|
|
|
|
|
|
|
# we will store the second order energy derivations here
|
|
|
|
|
mag_ent["energies"] = []
|
|
|
|
|
|
|
|
|
|
# These will be the perturbed potentials from eq. 100
|
|
|
|
|
mag_ent["Vu1"] = [] # so they are independent in memory
|
|
|
|
|
mag_ent["Vu2"] = []
|
|
|
|
|
|
|
|
|
|
mag_ent["Gii"] = [] # Greens function
|
|
|
|
|
mag_ent["Gii_tmp"] = [] # Greens function for parallelization
|
|
|
|
|
for _ in simulation_parameters["ref_xcf_orientations"]:
|
|
|
|
|
# Rotations for every quantization axis
|
|
|
|
|
mag_ent["Vu1"].append([])
|
|
|
|
|
mag_ent["Vu2"].append([])
|
|
|
|
|
# Greens functions for every quantization axis
|
|
|
|
|
mag_ent["Gii"].append(
|
|
|
|
|
np.zeros(
|
|
|
|
|
(simulation_parameters["eset"], spin_box_shape, spin_box_shape),
|
|
|
|
|
dtype="complex128",
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
mag_ent["Gii_tmp"].append(
|
|
|
|
|
np.zeros(
|
|
|
|
|
(simulation_parameters["eset"], spin_box_shape, spin_box_shape),
|
|
|
|
|
dtype="complex128",
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# for every site we have to store 2x3 Greens function (and the associated _tmp-s)
|
|
|
|
|
# in the 3 reference directions, because G_ij and G_ji are both needed
|
|
|
|
|
for pair in pairs:
|
|
|
|
|
# calculate distance
|
|
|
|
|
xyz_ai = magnetic_entities[pair["ai"]]["xyz"]
|
|
|
|
|
xyz_aj = magnetic_entities[pair["aj"]]["xyz"]
|
|
|
|
|
xyz_aj = xyz_aj + pair["Ruc"] @ simulation_parameters["cell"]
|
|
|
|
|
pair["dist"] = np.linalg.norm(xyz_ai - xyz_aj)
|
|
|
|
|
|
|
|
|
|
# calculate size for Greens function generation
|
|
|
|
|
spin_box_shape_i = len(magnetic_entities[pair["ai"]]["spin_box_indices"])
|
|
|
|
|
spin_box_shape_j = len(magnetic_entities[pair["aj"]]["spin_box_indices"])
|
|
|
|
|
# tag generation
|
|
|
|
|
pair["tags"] = []
|
|
|
|
|
for mag_ent in [magnetic_entities[pair["ai"]], magnetic_entities[pair["aj"]]]:
|
|
|
|
|
tag = ""
|
|
|
|
|
# get atoms of magnetic entity
|
|
|
|
|
atoms_idx = mag_ent["atom"]
|
|
|
|
|
orbitals = mag_ent["l"]
|
|
|
|
|
|
|
|
|
|
# if magnetic entity contains one atoms
|
|
|
|
|
if isinstance(atoms_idx, int):
|
|
|
|
|
tag += f"[{atoms_idx}]{dh.atoms[atoms_idx].tag}({orbitals})"
|
|
|
|
|
|
|
|
|
|
# if magnetic entity contains more than one atoms
|
|
|
|
|
if isinstance(atoms_idx, list):
|
|
|
|
|
# iterate over atoms
|
|
|
|
|
atom_group = "{"
|
|
|
|
|
for atom_idx in atoms_idx:
|
|
|
|
|
atom_group += f"[{atom_idx}]{dh.atoms[atom_idx].tag}({orbitals})--"
|
|
|
|
|
# end {} of the atoms in the magnetic entity
|
|
|
|
|
tag += atom_group[:-2] + "}"
|
|
|
|
|
pair["tags"].append(tag)
|
|
|
|
|
pair["energies"] = [] # we will store the second order energy derivations here
|
|
|
|
|
|
|
|
|
|
pair["Gij"] = [] # Greens function
|
|
|
|
|
pair["Gji"] = []
|
|
|
|
|
pair["Gij_tmp"] = [] # Greens function for parallelization
|
|
|
|
|
pair["Gji_tmp"] = []
|
|
|
|
|
for _ in simulation_parameters["ref_xcf_orientations"]:
|
|
|
|
|
# Greens functions for every quantization axis
|
|
|
|
|
pair["Gij"].append(
|
|
|
|
|
np.zeros(
|
|
|
|
|
(simulation_parameters["eset"], spin_box_shape_i, spin_box_shape_j),
|
|
|
|
|
dtype="complex128",
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
pair["Gij_tmp"].append(
|
|
|
|
|
np.zeros(
|
|
|
|
|
(simulation_parameters["eset"], spin_box_shape_i, spin_box_shape_j),
|
|
|
|
|
dtype="complex128",
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
pair["Gji"].append(
|
|
|
|
|
np.zeros(
|
|
|
|
|
(simulation_parameters["eset"], spin_box_shape_j, spin_box_shape_i),
|
|
|
|
|
dtype="complex128",
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
pair["Gji_tmp"].append(
|
|
|
|
|
np.zeros(
|
|
|
|
|
(simulation_parameters["eset"], spin_box_shape_j, spin_box_shape_i),
|
|
|
|
|
dtype="complex128",
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return pairs, magnetic_entities
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def parallel_Gk(HK, SK, eran, eset):
|
|
|
|
|
"""Calculates the Greens function by inversion.
|
|
|
|
|
|
|
|
|
|
It calculates the Greens function on all the energy levels at the same time.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
HK : (NO, NO), np.array_like
|
|
|
|
|
Hamiltonian at a given k point
|
|
|
|
|
SK : (NO, NO), np.array_like
|
|
|
|
|
Overlap Matrix at a given k point
|
|
|
|
|
eran : (eset) np.array_like
|
|
|
|
|
Energy sample along the contour
|
|
|
|
|
eset : int
|
|
|
|
|
Number of energy samples along the contour
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Gk : (eset, NO, NO), np.array_like
|
|
|
|
|
Green's function at a given k point
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# Calculates the Greens function on all the energy levels
|
|
|
|
|
return inv(SK * eran.reshape(eset, 1, 1) - HK)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def sequential_GK(HK, SK, eran, eset):
|
|
|
|
|
"""Calculates the Greens function by inversion.
|
|
|
|
|
|
|
|
|
|
It calculates sequentially over the energy levels.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
HK : (NO, NO), np.array_like
|
|
|
|
|
Hamiltonian at a given k point
|
|
|
|
|
SK : (NO, NO), np.array_like
|
|
|
|
|
Overlap Matrix at a given k point
|
|
|
|
|
eran : (eset) np.array_like
|
|
|
|
|
Energy sample along the contour
|
|
|
|
|
eset : int
|
|
|
|
|
Number of energy samples along the contour
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Gk : (eset, NO, NO), np.array_like
|
|
|
|
|
Green's function at a given k point
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# creates an empty holder
|
|
|
|
|
Gk = np.zeros(shape=(eset, HK.shape[0], HK.shape[1]), dtype="complex128")
|
|
|
|
|
# fills the holder sequentially by the Greens function on a given energy
|
|
|
|
|
for j in range(eset):
|
|
|
|
|
Gk[j] = inv(SK * eran[j] - HK)
|
|
|
|
|
|
|
|
|
|
return Gk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def remove_clutter_for_save(pairs, magnetic_entities):
|
|
|
|
|
"""Removes unimportant data from the dictionaries.
|
|
|
|
|
|
|
|
|
|
It is used before saving to throw away data that
|
|
|
|
|
is not needed for post processing.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
pairs : dict
|
|
|
|
|
Contains all the pair information
|
|
|
|
|
magnetic_entities : dict
|
|
|
|
|
Contains all the magnetic entity information
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
pairs : dict
|
|
|
|
|
Contains all the reduced pair information
|
|
|
|
|
magnetic_entities : dict
|
|
|
|
|
Contains all the reduced magnetic entity information
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# remove clutter from magnetic entities and pair information
|
|
|
|
|
for pair in pairs:
|
|
|
|
|
del pair["Gij"]
|
|
|
|
|
del pair["Gij_tmp"]
|
|
|
|
|
del pair["Gji"]
|
|
|
|
|
del pair["Gji_tmp"]
|
|
|
|
|
for mag_ent in magnetic_entities:
|
|
|
|
|
del mag_ent["Gii"]
|
|
|
|
|
del mag_ent["Gii_tmp"]
|
|
|
|
|
del mag_ent["Vu1"]
|
|
|
|
|
del mag_ent["Vu2"]
|
|
|
|
|
|
|
|
|
|
return pairs, magnetic_entities
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def blow_up_orbindx(orb_indices):
|
|
|
|
|
"""Function to blow up orbital indices to make SPIN BOX indices.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
orb_indices : np.array_like
|
|
|
|
|
These are the indices in ORBITAL BOX
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
orb_indices : np.array_like
|
|
|
|
|
These are the indices in SPIN BOX
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
orb_indices = np.array([[2 * o, 2 * o + 1] for o in orb_indices]).flatten()
|
|
|
|
|
|
|
|
|
|
return orb_indices
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def spin_tracer(M):
|
|
|
|
|
"""Spin tracer utility.
|
|
|
|
|
|
|
|
|
|
This takes an operator with the orbital-spin sequence:
|
|
|
|
|
orbital 1 up,
|
|
|
|
|
orbital 1 down,
|
|
|
|
|
orbital 2 up,
|
|
|
|
|
orbital 2 down,
|
|
|
|
|
that is in the SPIN-BOX representation,
|
|
|
|
|
and extracts orbital dependent Pauli traces.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
M : np.array_like
|
|
|
|
|
Traceable matrix
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
dict
|
|
|
|
|
It contains the traced matrix with "x", "y", "z" and "c"
|
|
|
|
|
"""
|
|
|
|
|
M11 = M[0::2, 0::2]
|
|
|
|
|
M12 = M[0::2, 1::2]
|
|
|
|
|
M21 = M[1::2, 0::2]
|
|
|
|
|
M22 = M[1::2, 1::2]
|
|
|
|
|
|
|
|
|
|
M_o = dict()
|
|
|
|
|
M_o["x"] = M12 + M21
|
|
|
|
|
M_o["y"] = 1j * (M12 - M21)
|
|
|
|
|
M_o["z"] = M11 - M22
|
|
|
|
|
M_o["c"] = M11 + M22
|
|
|
|
|
|
|
|
|
|
return M_o
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def parse_magnetic_entity(dh, atom=None, l=None, **kwargs):
|
|
|
|
|
"""Function to define orbital indexes of a given magnetic entity.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
dh : sisl.physics.Hamiltonian
|
|
|
|
|
Hamiltonian from sisl
|
|
|
|
|
atom : integer or list of integers, optional
|
|
|
|
|
Defining atom (or atoms) in the unit cell forming the magnetic entity. Defaults to None
|
|
|
|
|
l : integer, optional
|
|
|
|
|
Defining the angular momentum channel. Defaults to None
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
list
|
|
|
|
|
The orbital indexes of the given magnetic entity
|
|
|
|
|
"""
|
|
|
|
|
# case where we deal with more than one atom defining the magnetic entity
|
|
|
|
|
if type(atom) == list:
|
|
|
|
|
dat = []
|
|
|
|
|
for a in atom:
|
|
|
|
|
a_orb_idx = dh.geometry.a2o(a, all=True)
|
|
|
|
|
if (
|
|
|
|
|
type(l) == int
|
|
|
|
|
): # if specified we restrict to given l angular momentum channel inside each atom
|
|
|
|
|
a_orb_idx = a_orb_idx[[o.l == l for o in dh.geometry.atoms[a].orbitals]]
|
|
|
|
|
dat.append(a_orb_idx)
|
|
|
|
|
orbital_indeces = np.hstack(dat)
|
|
|
|
|
# case where we deal with a singel atom magnetic entity
|
|
|
|
|
elif type(atom) == int:
|
|
|
|
|
orbital_indeces = dh.geometry.a2o(atom, all=True)
|
|
|
|
|
if (
|
|
|
|
|
type(l) == int
|
|
|
|
|
): # if specified we restrict to given l angular momentum channel
|
|
|
|
|
orbital_indeces = orbital_indeces[
|
|
|
|
|
[o.l == l for o in dh.geometry.atoms[atom].orbitals]
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
return orbital_indeces # numpy array containing integers labeling orbitals associated to a magnetic entity.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def calculate_anisotropy_tensor(mag_ent):
|
|
|
|
|
"""Calculates the renormalized anisotropy tensor from the energies.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
mag_ent : dict
|
|
|
|
|
An element from the magnetic entities
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
K : np.array_like
|
|
|
|
|
elements of the anisotropy tensor
|
|
|
|
|
consistency_check : float
|
|
|
|
|
Absolute value of the difference from the consistency check
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# get the energies
|
|
|
|
|
energies = mag_ent["energies"]
|
|
|
|
|
|
|
|
|
|
K = np.zeros((3, 3))
|
|
|
|
|
|
|
|
|
|
# calculate the diagonal tensor elements
|
|
|
|
|
K[0, 0] = energies[1, 1] - energies[1, 0]
|
|
|
|
|
K[1, 1] = energies[0, 1] - energies[0, 0]
|
|
|
|
|
K[2, 2] = 0
|
|
|
|
|
|
|
|
|
|
# calculate the off-diagonal tensor elements
|
|
|
|
|
K[0, 1] = (energies[2, 0] + energies[2, 1]) / 2 - energies[2, 2]
|
|
|
|
|
K[1, 0] = K[0, 1]
|
|
|
|
|
K[0, 2] = (energies[1, 0] + energies[1, 1]) / 2 - energies[1, 2]
|
|
|
|
|
K[2, 0] = K[0, 2]
|
|
|
|
|
K[1, 2] = (energies[0, 0] + energies[0, 1]) / 2 - energies[0, 2]
|
|
|
|
|
K[2, 1] = K[1, 2]
|
|
|
|
|
|
|
|
|
|
# perform consistency check
|
|
|
|
|
calculated_diff = K[1, 1] - K[0, 0]
|
|
|
|
|
expected_diff = energies[2, 0] - energies[2, 1]
|
|
|
|
|
consistency_check = abs(calculated_diff - expected_diff)
|
|
|
|
|
|
|
|
|
|
return K, consistency_check
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def calculate_exchange_tensor(pair):
|
|
|
|
|
"""Calculates the exchange tensor from the energies.
|
|
|
|
|
|
|
|
|
|
It produces the isotropic exchange, the relevant elements
|
|
|
|
|
from the Dzyaloshinskii-Morilla (Dm) tensor, the symmetric-anisotropy
|
|
|
|
|
and the complete exchange tensor.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
pair : dict
|
|
|
|
|
An element from the pairs
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
J_iso : float
|
|
|
|
|
Isotropic exchange (Tr[J] / 3)
|
|
|
|
|
J_S : np.array_like
|
|
|
|
|
Symmetric-anisotropy (J_S = J - J_iso * I ––> Jxx, Jyy, Jxy, Jxz, Jyz)
|
|
|
|
|
D : np.array_like
|
|
|
|
|
DM elements (Dx, Dy, Dz)
|
|
|
|
|
J : np.array_like
|
|
|
|
|
Complete exchange tensor flattened (Jxx, Jxy, Jxz, Jyx, Jyy, Jyz, Jzx, Jzy, Jzz)
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# energies from rotations
|
|
|
|
|
energies = pair["energies"]
|
|
|
|
|
# Initialize output arrays
|
|
|
|
|
J = np.zeros((3, 3))
|
|
|
|
|
D = np.zeros(3)
|
|
|
|
|
|
|
|
|
|
# J matrix calculations
|
|
|
|
|
# J(1,1) = mean([DEij(2,2,2), DEij(2,2,3)])
|
|
|
|
|
J[0, 0] = np.mean([energies[1, 3], energies[2, 3]])
|
|
|
|
|
|
|
|
|
|
# J(1,2) = -mean([DEij(1,2,3), DEij(2,1,3)])
|
|
|
|
|
J[0, 1] = -np.mean([energies[2, 1], energies[2, 2]])
|
|
|
|
|
J[1, 0] = J[0, 1]
|
|
|
|
|
|
|
|
|
|
# J(1,3) = -mean([DEij(1,2,2), DEij(2,1,2)])
|
|
|
|
|
J[0, 2] = -np.mean([energies[1, 1], energies[1, 2]])
|
|
|
|
|
J[2, 0] = J[0, 2]
|
|
|
|
|
|
|
|
|
|
# J(2,2) = mean([DEij(2,2,1), DEij(1,1,3)])
|
|
|
|
|
J[1, 1] = np.mean([energies[0, 3], energies[2, 0]])
|
|
|
|
|
|
|
|
|
|
# J(2,3) = -mean([DEij(1,2,1), DEij(2,1,1)])
|
|
|
|
|
J[1, 2] = -np.mean([energies[0, 1], energies[0, 2]])
|
|
|
|
|
J[2, 1] = J[1, 2]
|
|
|
|
|
|
|
|
|
|
# J(3,3) = mean([DEij(1,1,1), DEij(1,1,2)])
|
|
|
|
|
J[2, 2] = np.mean([energies[0, 0], energies[1, 0]])
|
|
|
|
|
|
|
|
|
|
# D vector calculations
|
|
|
|
|
# D(1) = mean([DEij(1,2,1), -DEij(2,1,1)])
|
|
|
|
|
D[0] = np.mean([energies[0, 1], -energies[0, 2]])
|
|
|
|
|
|
|
|
|
|
# D(2) = mean([DEij(2,1,2), -DEij(1,2,2)])
|
|
|
|
|
D[1] = np.mean([energies[1, 2], -energies[1, 1]])
|
|
|
|
|
|
|
|
|
|
# D(3) = mean([DEij(1,2,3), -DEij(2,1,3)])
|
|
|
|
|
D[2] = np.mean([energies[2, 1], -energies[2, 2]])
|
|
|
|
|
|
|
|
|
|
J_iso = np.trace(J) / 3
|
|
|
|
|
# based on the grogu output pdf
|
|
|
|
|
# traceless symmetric exchange matrix:
|
|
|
|
|
# Jxx, Jyy, Jxy, Jxz, Jyz
|
|
|
|
|
J_S = np.array([J[0, 0] - J_iso, J[1, 1] - J_iso, J[0, 1], J[0, 2], J[1, 2]])
|
|
|
|
|
|
|
|
|
|
return J_iso, J_S, D, J
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def read_fdf(path):
|
|
|
|
|
"""It reads the simulation parameters, magnetic entities and pairs from the fdf.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
path : string
|
|
|
|
|
The path to the .fdf file
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
fdf_arguments : dict
|
|
|
|
|
The read input arguments from the fdf file
|
|
|
|
|
magnetic_entities : list
|
|
|
|
|
It contains the dictionaries associated with the magnetic entities
|
|
|
|
|
pairs : dict
|
|
|
|
|
It contains the dictionaries associated with the pair information
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# read fdf file
|
|
|
|
|
fdf = fdfSileSiesta(path)
|
|
|
|
|
fdf_arguments = dict()
|
|
|
|
|
|
|
|
|
|
InputFile = fdf.get("InputFile")
|
|
|
|
|
if InputFile is not None:
|
|
|
|
|
fdf_arguments["infile"] = InputFile
|
|
|
|
|
|
|
|
|
|
OutputFile = fdf.get("OutputFile")
|
|
|
|
|
if OutputFile is not None:
|
|
|
|
|
fdf_arguments["outfile"] = OutputFile
|
|
|
|
|
|
|
|
|
|
ScfXcfOrientation = fdf.get("ScfXcfOrientation")
|
|
|
|
|
if ScfXcfOrientation is not None:
|
|
|
|
|
fdf_arguments["scf_xcf_orientation"] = np.array(ScfXcfOrientation)
|
|
|
|
|
|
|
|
|
|
XCF_Rotation = fdf.get("XCF_Rotation")
|
|
|
|
|
if XCF_Rotation is not None:
|
|
|
|
|
rotations = []
|
|
|
|
|
# iterate over rows
|
|
|
|
|
for rot in XCF_Rotation:
|
|
|
|
|
# convert row to dictionary
|
|
|
|
|
dat = np.array(rot.split()[:9], dtype=float)
|
|
|
|
|
o = dat[:3]
|
|
|
|
|
vw = dat[3:].reshape(2, 3)
|
|
|
|
|
rotations.append(dict(o=o, vw=vw))
|
|
|
|
|
fdf_arguments["ref_xcf_orientations"] = rotations
|
|
|
|
|
|
|
|
|
|
Kset = fdf.get("INTEGRAL.Kset")
|
|
|
|
|
if Kset is not None:
|
|
|
|
|
fdf_arguments["kset"] = Kset
|
|
|
|
|
|
|
|
|
|
Kdirs = fdf.get("INTEGRAL.Kdirs")
|
|
|
|
|
if Kdirs is not None:
|
|
|
|
|
fdf_arguments["kdirs"] = Kdirs
|
|
|
|
|
|
|
|
|
|
# This is permitted because it means automatic Ebot definition
|
|
|
|
|
fdf_arguments["ebot"] = fdf.get("INTEGRAL.Ebot")
|
|
|
|
|
|
|
|
|
|
Eset = fdf.get("INTEGRAL.Eset")
|
|
|
|
|
if Eset is not None:
|
|
|
|
|
fdf_arguments["eset"] = Eset
|
|
|
|
|
|
|
|
|
|
Esetp = fdf.get("INTEGRAL.Esetp")
|
|
|
|
|
if Esetp is not None:
|
|
|
|
|
fdf_arguments["esetp"] = Esetp
|
|
|
|
|
|
|
|
|
|
ParallelSolver = fdf.get("GREEN.ParallelSolver")
|
|
|
|
|
if ParallelSolver is not None:
|
|
|
|
|
fdf_arguments["parallel_solver_for_Gk"] = ParallelSolver
|
|
|
|
|
|
|
|
|
|
PadawanMode = fdf.get("PadawanMode")
|
|
|
|
|
if PadawanMode is not None:
|
|
|
|
|
fdf_arguments["padawan_mode"] = PadawanMode
|
|
|
|
|
|
|
|
|
|
Pairs = fdf.get("Pairs")
|
|
|
|
|
if Pairs is not None:
|
|
|
|
|
pairs = []
|
|
|
|
|
# iterate over rows
|
|
|
|
|
for fdf_pair in Pairs:
|
|
|
|
|
# convert data
|
|
|
|
|
dat = np.array(fdf_pair.split()[:5], dtype=int)
|
|
|
|
|
# create pair dictionary
|
|
|
|
|
my_pair = dict(ai=dat[0], aj=dat[1], Ruc=np.array(dat[2:]))
|
|
|
|
|
pairs.append(my_pair)
|
|
|
|
|
|
|
|
|
|
MagneticEntities = fdf.get("MagneticEntities")
|
|
|
|
|
if MagneticEntities is not None:
|
|
|
|
|
magnetic_entities = []
|
|
|
|
|
for mag_ent in MagneticEntities:
|
|
|
|
|
row = mag_ent.split()
|
|
|
|
|
dat = []
|
|
|
|
|
for string in row:
|
|
|
|
|
if string.find("#") != -1:
|
|
|
|
|
break
|
|
|
|
|
dat.append(string)
|
|
|
|
|
if dat[0] in {"Cluster", "cluster"}:
|
|
|
|
|
magnetic_entities.append(dict(atom=[int(_) for _ in dat[1:]]))
|
|
|
|
|
continue
|
|
|
|
|
elif dat[0] in {"AtomShell", "Atomshell", "atomShell", "atomshell"}:
|
|
|
|
|
magnetic_entities.append(
|
|
|
|
|
dict(atom=int(dat[1]), l=[int(_) for _ in dat[2:]])
|
|
|
|
|
)
|
|
|
|
|
continue
|
|
|
|
|
elif dat[0] in {"AtomOrbital", "Atomorbital", "tomOrbital", "atomorbital"}:
|
|
|
|
|
magnetic_entities.append(
|
|
|
|
|
dict(atom=int(dat[1]), orb=[int(_) for _ in dat[2:]])
|
|
|
|
|
)
|
|
|
|
|
continue
|
|
|
|
|
elif dat[0] in {"Orbitals", "orbitals"}:
|
|
|
|
|
magnetic_entities.append(dict(orb=[int(_) for _ in dat[1:]]))
|
|
|
|
|
continue
|
|
|
|
|
else:
|
|
|
|
|
raise Exception("Unrecognizable magnetic entity in .fdf!")
|
|
|
|
|
|
|
|
|
|
return fdf_arguments, magnetic_entities, pairs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def process_input_args(
|
|
|
|
|
default_arguments,
|
|
|
|
|
fdf_arguments,
|
|
|
|
|
command_line_arguments,
|
|
|
|
|
accepted_inputs=ACCEPTED_INPUTS,
|
|
|
|
|
):
|
|
|
|
|
"""It returns the final simulation parameters based on the inputs.
|
|
|
|
|
|
|
|
|
|
The merging is done in the order of priority:
|
|
|
|
|
1. command line arguments
|
|
|
|
|
2. fdf arguments
|
|
|
|
|
3. default arguments
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
default_arguments : dict
|
|
|
|
|
Default arguments from grogupy
|
|
|
|
|
fdf_arguments : dict
|
|
|
|
|
Arguments read from the fdf input file
|
|
|
|
|
command_line_arguments : dict
|
|
|
|
|
Arguments from the command line
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
dict
|
|
|
|
|
The final simulation parameters
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# iterate over fdf_arguments and update default arguments
|
|
|
|
|
for key, value in fdf_arguments.values():
|
|
|
|
|
if value is not None and key in accepted_inputs:
|
|
|
|
|
default_arguments[key] = value
|
|
|
|
|
|
|
|
|
|
# iterate over command_line_arguments and update default arguments
|
|
|
|
|
for key, value in command_line_arguments.values():
|
|
|
|
|
if value is not None and key in accepted_inputs:
|
|
|
|
|
default_arguments[key] = value
|
|
|
|
|
|
|
|
|
|
return default_arguments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def save_pickle(outfile, data):
|
|
|
|
|
"""Saves the data in the outfile with pickle.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
outfile : str
|
|
|
|
|
Path to outfile
|
|
|
|
|
data : dict
|
|
|
|
|
Contains the data
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# save dictionary
|
|
|
|
|
with open(outfile, "wb") as output_file:
|
|
|
|
|
dump(data, output_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_pickle(infile):
|
|
|
|
|
"""Loads the data from the infile with pickle.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
infile : str
|
|
|
|
|
Path to infile
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
data : dict
|
|
|
|
|
A dictionary of data
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# open and read file
|
|
|
|
|
with open(infile, "wb") as input_file:
|
|
|
|
|
data = load(data, input_file)
|
|
|
|
|
|
|
|
|
|
return data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def print_job_description(simulation_parameters):
|
|
|
|
|
"""It prints the parameters and the description of the job.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
simulation_parameters : dict
|
|
|
|
|
It contains the simulations parameters
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
print(
|
|
|
|
|
"================================================================================================================================================================"
|
|
|
|
|
)
|
|
|
|
|
print("Input file: ")
|
|
|
|
|
print(simulation_parameters["infile"])
|
|
|
|
|
print("Output file: ")
|
|
|
|
|
print(simulation_parameters["outfile"])
|
|
|
|
|
print(
|
|
|
|
|
"Number of nodes in the parallel cluster: ",
|
|
|
|
|
simulation_parameters["parallel_size"],
|
|
|
|
|
)
|
|
|
|
|
if simulation_parameters["parallel_solver_for_Gk"]:
|
|
|
|
|
print("solver used for Greens function calculation: parallel")
|
|
|
|
|
else:
|
|
|
|
|
print("solver used for Greens function calculation: sequential")
|
|
|
|
|
print(
|
|
|
|
|
"================================================================================================================================================================"
|
|
|
|
|
)
|
|
|
|
|
print("Cell [Ang]: ")
|
|
|
|
|
print(simulation_parameters["cell"])
|
|
|
|
|
print(
|
|
|
|
|
"================================================================================================================================================================"
|
|
|
|
|
)
|
|
|
|
|
print("DFT axis: ")
|
|
|
|
|
print(simulation_parameters["scf_xcf_orientation"])
|
|
|
|
|
print("Quantization axis and perpendicular rotation directions:")
|
|
|
|
|
for ref in simulation_parameters["ref_xcf_orientations"]:
|
|
|
|
|
print(ref["o"], " --» ", ref["vw"])
|
|
|
|
|
print(
|
|
|
|
|
"================================================================================================================================================================"
|
|
|
|
|
)
|
|
|
|
|
print("Parameters for the contour integral:")
|
|
|
|
|
print("Number of k points: ", simulation_parameters["kset"])
|
|
|
|
|
print("k point directions: ", simulation_parameters["kdirs"])
|
|
|
|
|
if simulation_parameters["automatic_ebot"]:
|
|
|
|
|
print(
|
|
|
|
|
"Ebot: ",
|
|
|
|
|
simulation_parameters["ebot"],
|
|
|
|
|
" WARNING: This was automatically determined!",
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
print("Ebot: ", simulation_parameters["ebot"])
|
|
|
|
|
print("Eset: ", simulation_parameters["eset"])
|
|
|
|
|
print("Esetp: ", simulation_parameters["esetp"])
|
|
|
|
|
print(
|
|
|
|
|
"================================================================================================================================================================"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def print_parameters(simulation_parameters):
|
|
|
|
|
"""It prints the simulation parameters for the grogu out.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
simulation_parameters : dict
|
|
|
|
|
It contains the simulations parameters
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
print(
|
|
|
|
|
"================================================================================================================================================================"
|
|
|
|
|
)
|
|
|
|
|
print("Input file: ")
|
|
|
|
|
print(simulation_parameters["infile"])
|
|
|
|
|
print("Output file: ")
|
|
|
|
|
print(simulation_parameters["outfile"])
|
|
|
|
|
print(
|
|
|
|
|
"Number of nodes in the parallel cluster: ",
|
|
|
|
|
simulation_parameters["parallel_size"],
|
|
|
|
|
)
|
|
|
|
|
print(
|
|
|
|
|
"================================================================================================================================================================"
|
|
|
|
|
)
|
|
|
|
|
print("Cell [Ang]: ")
|
|
|
|
|
print(simulation_parameters["cell"])
|
|
|
|
|
print(
|
|
|
|
|
"================================================================================================================================================================"
|
|
|
|
|
)
|
|
|
|
|
print("DFT axis: ")
|
|
|
|
|
print(simulation_parameters["scf_xcf_orientation"])
|
|
|
|
|
print("Quantization axis and perpendicular rotation directions:")
|
|
|
|
|
for ref in simulation_parameters["ref_xcf_orientations"]:
|
|
|
|
|
print(ref["o"], " --» ", ref["vw"])
|
|
|
|
|
print(
|
|
|
|
|
"================================================================================================================================================================"
|
|
|
|
|
)
|
|
|
|
|
print("Parameters for the contour integral:")
|
|
|
|
|
print("Number of k points: ", simulation_parameters["kset"])
|
|
|
|
|
print("k point directions: ", simulation_parameters["kdirs"])
|
|
|
|
|
print("Ebot: ", simulation_parameters["ebot"])
|
|
|
|
|
print("Eset: ", simulation_parameters["eset"])
|
|
|
|
|
print("Esetp: ", simulation_parameters["esetp"])
|
|
|
|
|
print(
|
|
|
|
|
"================================================================================================================================================================"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def print_atoms_and_pairs(magnetic_entities, pairs):
|
|
|
|
|
"""It prints the pair and magnetic entity information for the grogu out.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
magnetic_entities : dict
|
|
|
|
|
It contains the data on the magnetic entities
|
|
|
|
|
pairs : dict
|
|
|
|
|
It contains the data on the pairs
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
print("Atomic information: ")
|
|
|
|
|
print(
|
|
|
|
|
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
|
|
|
|
|
)
|
|
|
|
|
print(
|
|
|
|
|
"[atom index]Element(orbitals) x [Ang] y [Ang] z [Ang] Sx Sy Sz Q Lx Ly Lz Jx Jy Jz"
|
|
|
|
|
)
|
|
|
|
|
print(
|
|
|
|
|
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
|
|
|
|
|
)
|
|
|
|
|
# iterate over magnetic entities
|
|
|
|
|
for mag_ent in magnetic_entities:
|
|
|
|
|
# iterate over atoms
|
|
|
|
|
for tag, xyz in zip(mag_ent["tags"], mag_ent["xyz"]):
|
|
|
|
|
# coordinates and tag
|
|
|
|
|
print(f"{tag} {xyz[0]} {xyz[1]} {xyz[2]}")
|
|
|
|
|
print("")
|
|
|
|
|
|
|
|
|
|
print(
|
|
|
|
|
"================================================================================================================================================================"
|
|
|
|
|
)
|
|
|
|
|
print("Anisotropy [meV]")
|
|
|
|
|
print(
|
|
|
|
|
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
|
|
|
|
|
)
|
|
|
|
|
print("Magnetic entity x [Ang] y [Ang] z [Ang]")
|
|
|
|
|
print(
|
|
|
|
|
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
|
|
|
|
|
)
|
|
|
|
|
# iterate over magnetic entities
|
|
|
|
|
for mag_ent in magnetic_entities:
|
|
|
|
|
# iterate over atoms
|
|
|
|
|
for tag, xyz in zip(mag_ent["tags"], mag_ent["xyz"]):
|
|
|
|
|
# coordinates and tag
|
|
|
|
|
print(f"{tag} {xyz[0]} {xyz[1]} {xyz[2]}")
|
|
|
|
|
print("Consistency check: ", mag_ent["K_consistency"])
|
|
|
|
|
print("K: # Kxx, Kxy, Kxz, Kyx, Kyy, Kyz, Kzx, Kzy, Kzz")
|
|
|
|
|
print(mag_ent["K"])
|
|
|
|
|
print("")
|
|
|
|
|
|
|
|
|
|
print(
|
|
|
|
|
"================================================================================================================================================================"
|
|
|
|
|
)
|
|
|
|
|
print("Exchange [meV]")
|
|
|
|
|
print(
|
|
|
|
|
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
|
|
|
|
|
)
|
|
|
|
|
print("Magnetic entity1 Magnetic entity2 [i j k] d [Ang]")
|
|
|
|
|
print(
|
|
|
|
|
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
|
|
|
|
|
)
|
|
|
|
|
# iterate over pairs
|
|
|
|
|
for pair in pairs:
|
|
|
|
|
# print pair parameters
|
|
|
|
|
print(
|
|
|
|
|
f"{pair['tags'][0]} {pair['tags'][1]} {pair['Ruc']} d [Ang] {pair['dist']}"
|
|
|
|
|
)
|
|
|
|
|
# print magnetic parameters
|
|
|
|
|
print("Isotropic: ", pair["J_iso"], " # Tr[J] / 3")
|
|
|
|
|
print("")
|
|
|
|
|
print("DMI: ", pair["D"], " # Dx, Dy, Dz")
|
|
|
|
|
print("")
|
|
|
|
|
print(
|
|
|
|
|
"Symmetric-anisotropy: ",
|
|
|
|
|
pair["J_S"],
|
|
|
|
|
" # J_S = J - J_iso * I ––> Jxx, Jyy, Jxy, Jxz, Jyz",
|
|
|
|
|
)
|
|
|
|
|
print("")
|
|
|
|
|
print("J: # Jxx, Jxy, Jxz, Jyx, Jyy, Jyz, Jzx, Jzy, Jzz")
|
|
|
|
|
print(pair["J"])
|
|
|
|
|
print(
|
|
|
|
|
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
print(
|
|
|
|
|
"================================================================================================================================================================"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def print_runtime_information(times):
|
|
|
|
|
"""It prints the runtime information for the grogu out.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
times : dict
|
|
|
|
|
It contains the runtime data
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
print("Runtime information: ")
|
|
|
|
|
print(f"Total runtime: {times['end_time'] - times['start_time']} s")
|
|
|
|
|
print(
|
|
|
|
|
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
|
|
|
|
|
)
|
|
|
|
|
print(f"Initial setup: {times['setup_time'] - times['start_time']} s")
|
|
|
|
|
print(
|
|
|
|
|
f"Hamiltonian conversion and XC field extraction: {times['H_and_XCF_time'] - times['setup_time']:.3f} s"
|
|
|
|
|
)
|
|
|
|
|
print(
|
|
|
|
|
f"Pair and site datastructure creatrions: {times['site_and_pair_dictionaries_time'] - times['H_and_XCF_time']:.3f} s"
|
|
|
|
|
)
|
|
|
|
|
print(
|
|
|
|
|
f"k set cration and distribution: {times['k_set_time'] - times['site_and_pair_dictionaries_time']:.3f} s"
|
|
|
|
|
)
|
|
|
|
|
print(
|
|
|
|
|
f"Rotating XC potential: {times['reference_rotations_time'] - times['k_set_time']:.3f} s"
|
|
|
|
|
)
|
|
|
|
|
print(
|
|
|
|
|
f"Greens function inversion: {times['green_function_inversion_time'] - times['reference_rotations_time']:.3f} s"
|
|
|
|
|
)
|
|
|
|
|
print(
|
|
|
|
|
f"Calculate energies and magnetic components: {times['end_time'] - times['green_function_inversion_time']:.3f} s"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def parse_command_line():
|
|
|
|
|
"""This function can read input from the command line."""
|
|
|
|
|
|
|
|
|
|
parser = ArgumentParser()
|
|
|
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"-i",
|
|
|
|
|
"--input",
|
|
|
|
|
dest="infile",
|
|
|
|
|
default=None,
|
|
|
|
|
type=str,
|
|
|
|
|
help="Input file name",
|
|
|
|
|
required=True,
|
|
|
|
|
)
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"-o",
|
|
|
|
|
"--output",
|
|
|
|
|
dest="outfile",
|
|
|
|
|
default=None,
|
|
|
|
|
type=str,
|
|
|
|
|
help="Output file name",
|
|
|
|
|
)
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--kset",
|
|
|
|
|
dest="kset",
|
|
|
|
|
default=None,
|
|
|
|
|
type=int,
|
|
|
|
|
help="k-space resolution of calculation",
|
|
|
|
|
)
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--kdirs",
|
|
|
|
|
dest="kdirs",
|
|
|
|
|
default=None,
|
|
|
|
|
type=str,
|
|
|
|
|
help="Definition of k-space dimensionality",
|
|
|
|
|
)
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--ebot",
|
|
|
|
|
dest="ebot",
|
|
|
|
|
default=None,
|
|
|
|
|
type=float,
|
|
|
|
|
help="Bottom energy of the contour",
|
|
|
|
|
)
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--eset",
|
|
|
|
|
dest="eset",
|
|
|
|
|
default=None,
|
|
|
|
|
type=int,
|
|
|
|
|
help="Number of energy points on the contour",
|
|
|
|
|
)
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--eset-p",
|
|
|
|
|
dest="esetp",
|
|
|
|
|
default=None,
|
|
|
|
|
type=int,
|
|
|
|
|
help="Parameter tuning the distribution on the contour",
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--parallel-green",
|
|
|
|
|
dest="parallel_solver_for_Gk",
|
|
|
|
|
default=None,
|
|
|
|
|
type=bool,
|
|
|
|
|
help="Whether to use the parallel or sequential solver for Greens function",
|
|
|
|
|
)
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
"--padawan-mode",
|
|
|
|
|
dest="padawan_mode",
|
|
|
|
|
default=None,
|
|
|
|
|
type=bool,
|
|
|
|
|
help="If it is on it turns on extra helpful information for new users",
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
cmd_line_args = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
return cmd_line_args
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(simulation_parameters, magnetic_entities, pairs):
|
|
|
|
|
# runtime information
|
|
|
|
|
times = dict()
|
|
|
|
|
times["start_time"] = timer()
|
|
|
|
|
|
|
|
|
|
# MPI parameters
|
|
|
|
|
comm = MPI.COMM_WORLD
|
|
|
|
|
size = comm.Get_size()
|
|
|
|
|
rank = comm.Get_rank()
|
|
|
|
|
root_node = 0
|
|
|
|
|
|
|
|
|
|
if rank == root_node:
|
|
|
|
|
# include parallel size in simulation parameters
|
|
|
|
|
simulation_parameters["parallel_size"] = size
|
|
|
|
|
|
|
|
|
|
# check versions for debugging
|
|
|
|
|
try:
|
|
|
|
|
print("sisl version: ", sisl.__version__)
|
|
|
|
|
except:
|
|
|
|
|
print("sisl version unknown.")
|
|
|
|
|
try:
|
|
|
|
|
print("numpy version: ", np.__version__)
|
|
|
|
|
except:
|
|
|
|
|
print("numpy version unknown.")
|
|
|
|
|
|
|
|
|
|
# rename outfile
|
|
|
|
|
if not simulation_parameters["outfile"].endswith(".pickle"):
|
|
|
|
|
simulation_parameters["outfile"] += ".pickle"
|
|
|
|
|
|
|
|
|
|
# if ebot is not given put it 1 eV under the smallest energy
|
|
|
|
|
if simulation_parameters["ebot"] is None:
|
|
|
|
|
try:
|
|
|
|
|
eigfile = simulation_parameters["infile"][:-3] + "EIG"
|
|
|
|
|
simulation_parameters["ebot"] = read_siesta_emin(eigfile) - 1
|
|
|
|
|
simulation_parameters["automatic_ebot"] = True
|
|
|
|
|
except:
|
|
|
|
|
print("Could not determine ebot.")
|
|
|
|
|
print("Parameter was not given and .EIG file was not found.")
|
|
|
|
|
else:
|
|
|
|
|
simulation_parameters["automatic_ebot"] = False
|
|
|
|
|
|
|
|
|
|
# add third direction for off-diagonal anisotropy
|
|
|
|
|
for orientation in simulation_parameters["ref_xcf_orientations"]:
|
|
|
|
|
o1 = orientation["vw"][0]
|
|
|
|
|
o2 = orientation["vw"][1]
|
|
|
|
|
orientation["vw"].append((o1 + o2) / np.sqrt(2))
|
|
|
|
|
|
|
|
|
|
# read sile
|
|
|
|
|
fdf = sisl.get_sile(simulation_parameters["infile"])
|
|
|
|
|
|
|
|
|
|
# read in hamiltonian
|
|
|
|
|
dh = fdf.read_hamiltonian()
|
|
|
|
|
|
|
|
|
|
# read unit cell vectors
|
|
|
|
|
simulation_parameters["cell"] = fdf.read_geometry().cell
|
|
|
|
|
|
|
|
|
|
# unit cell index
|
|
|
|
|
uc_in_sc_idx = dh.lattice.sc_index([0, 0, 0])
|
|
|
|
|
|
|
|
|
|
if rank == root_node:
|
|
|
|
|
print("\n\n\n\n\n")
|
|
|
|
|
print(
|
|
|
|
|
"#################################################################### JOB INFORMATION ###########################################################################"
|
|
|
|
|
)
|
|
|
|
|
print_job_description(simulation_parameters)
|
|
|
|
|
print(
|
|
|
|
|
"################################################################################################################################################################"
|
|
|
|
|
)
|
|
|
|
|
print("\n\n\n\n\n")
|
|
|
|
|
|
|
|
|
|
times["setup_time"] = timer()
|
|
|
|
|
print(f"Setup done. Elapsed time: {times['setup_time']} s")
|
|
|
|
|
print(
|
|
|
|
|
"================================================================================================================================================================"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
NO = dh.no # shorthand for number of orbitals in the unit cell
|
|
|
|
|
|
|
|
|
|
# reformat Hamltonian and Overlap matrix for manipulations
|
|
|
|
|
hh, ss = build_hh_ss(dh)
|
|
|
|
|
|
|
|
|
|
# symmetrizing Hamiltonian and Overlap matrix to make them hermitian
|
|
|
|
|
for i in range(dh.lattice.sc_off.shape[0]):
|
|
|
|
|
j = dh.lattice.sc_index(-dh.lattice.sc_off[i])
|
|
|
|
|
h1, h1d = hh[i], hh[j]
|
|
|
|
|
hh[i], hh[j] = (h1 + h1d.T.conj()) / 2, (h1d + h1.T.conj()) / 2
|
|
|
|
|
s1, s1d = ss[i], ss[j]
|
|
|
|
|
ss[i], ss[j] = (s1 + s1d.T.conj()) / 2, (s1d + s1.T.conj()) / 2
|
|
|
|
|
|
|
|
|
|
# identifying TRS and TRB parts of the Hamiltonian
|
|
|
|
|
TAUY = np.kron(np.eye(NO), TAU_Y)
|
|
|
|
|
hTR = np.array([TAUY @ hh[i].conj() @ TAUY for i in range(dh.lattice.nsc.prod())])
|
|
|
|
|
hTRS = (hh + hTR) / 2
|
|
|
|
|
hTRB = (hh - hTR) / 2
|
|
|
|
|
|
|
|
|
|
# extracting the exchange field
|
|
|
|
|
traced = [spin_tracer(hTRB[i]) for i in range(dh.lattice.nsc.prod())] # equation 77
|
|
|
|
|
XCF = np.array(
|
|
|
|
|
[
|
|
|
|
|
np.array([f["x"] / 2 for f in traced]),
|
|
|
|
|
np.array([f["y"] / 2 for f in traced]),
|
|
|
|
|
np.array([f["z"] / 2 for f in traced]),
|
|
|
|
|
]
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# check if exchange field has scalar part
|
|
|
|
|
max_xcfs = abs(np.array(np.array([f["c"] / 2 for f in traced]))).max()
|
|
|
|
|
if max_xcfs > 1e-12:
|
|
|
|
|
warnings.warn(
|
|
|
|
|
f"Exchange field has non negligible scalar part. Largest value is {max_xcfs}"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if rank == root_node:
|
|
|
|
|
times["H_and_XCF_time"] = timer()
|
|
|
|
|
print(
|
|
|
|
|
f"Hamiltonian and exchange field rotated. Elapsed time: {times['H_and_XCF_time']} s"
|
|
|
|
|
)
|
|
|
|
|
print(
|
|
|
|
|
"================================================================================================================================================================"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# initialize pairs and magnetic entities based on input information
|
|
|
|
|
pairs, magnetic_entities = setup_pairs_and_magnetic_entities(
|
|
|
|
|
magnetic_entities, pairs, dh, simulation_parameters
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if rank == root_node:
|
|
|
|
|
times["site_and_pair_dictionaries_time"] = timer()
|
|
|
|
|
print(
|
|
|
|
|
f"Site and pair dictionaries created. Elapsed time: {times['site_and_pair_dictionaries_time']} s"
|
|
|
|
|
)
|
|
|
|
|
print(
|
|
|
|
|
"================================================================================================================================================================"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# generate k space sampling
|
|
|
|
|
kset = make_kset(
|
|
|
|
|
dirs=simulation_parameters["kdirs"], NUMK=simulation_parameters["kset"]
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# generate weights for k points
|
|
|
|
|
wkset = np.ones(len(kset)) / len(kset)
|
|
|
|
|
|
|
|
|
|
# split the k points based on MPI size
|
|
|
|
|
kpcs = np.array_split(kset, size)
|
|
|
|
|
|
|
|
|
|
# use progress bar if available
|
|
|
|
|
if rank == root_node and tqdm_imported:
|
|
|
|
|
kpcs[root_node] = tqdm(kpcs[root_node], desc="k loop")
|
|
|
|
|
|
|
|
|
|
if rank == root_node:
|
|
|
|
|
times["k_set_time"] = timer()
|
|
|
|
|
print(f"k set created. Elapsed time: {times['k_set_time']} s")
|
|
|
|
|
print(
|
|
|
|
|
"================================================================================================================================================================"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# this will contain the three Hamiltonian in the
|
|
|
|
|
# reference directions needed to calculate the energy
|
|
|
|
|
# variations upon rotation
|
|
|
|
|
hamiltonians = []
|
|
|
|
|
|
|
|
|
|
# iterate over the reference directions (quantization axes)
|
|
|
|
|
for i, orient in enumerate(simulation_parameters["ref_xcf_orientations"]):
|
|
|
|
|
# obtain rotated exchange field and Hamiltonian
|
|
|
|
|
R = RotMa2b(simulation_parameters["scf_xcf_orientation"], orient["o"])
|
|
|
|
|
rot_XCF = np.einsum("ij,jklm->iklm", R, XCF)
|
|
|
|
|
rot_H_XCF = sum(
|
|
|
|
|
[np.kron(rot_XCF[i], tau) for i, tau in enumerate([TAU_X, TAU_Y, TAU_Z])]
|
|
|
|
|
)
|
|
|
|
|
rot_H_XCF_uc = rot_H_XCF[uc_in_sc_idx]
|
|
|
|
|
|
|
|
|
|
# obtain total Hamiltonian with the rotated exchange field
|
|
|
|
|
rot_H = hTRS + rot_H_XCF # equation 76
|
|
|
|
|
|
|
|
|
|
# store the relevant information of the Hamiltonian
|
|
|
|
|
hamiltonians.append(dict(orient=orient["o"], H=rot_H))
|
|
|
|
|
|
|
|
|
|
# these are the rotations (for now) perpendicular to the quantization axis
|
|
|
|
|
for u in orient["vw"]:
|
|
|
|
|
# section 2.H
|
|
|
|
|
Tu = np.kron(np.eye(NO, dtype=int), tau_u(u))
|
|
|
|
|
Vu1, Vu2 = calc_Vu(rot_H_XCF_uc, Tu)
|
|
|
|
|
|
|
|
|
|
for mag_ent in magnetic_entities:
|
|
|
|
|
idx = mag_ent["spin_box_indices"]
|
|
|
|
|
# fill up the perturbed potentials (for now) based on the on-site projections
|
|
|
|
|
mag_ent["Vu1"][i].append(onsite_projection(Vu1, idx, idx))
|
|
|
|
|
mag_ent["Vu2"][i].append(onsite_projection(Vu2, idx, idx))
|
|
|
|
|
|
|
|
|
|
if rank == root_node:
|
|
|
|
|
times["reference_rotations_time"] = timer()
|
|
|
|
|
print(
|
|
|
|
|
f"Rotations done perpendicular to quantization axis. Elapsed time: {times['reference_rotations_time']} s"
|
|
|
|
|
)
|
|
|
|
|
print(
|
|
|
|
|
"================================================================================================================================================================"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# provide helpful information to estimate the runtime and memory
|
|
|
|
|
# requirements of the Greens function calculations
|
|
|
|
|
if rank == root_node:
|
|
|
|
|
print("Starting matrix inversions.")
|
|
|
|
|
if simulation_parameters["padawan_mode"]:
|
|
|
|
|
print("Padawan mode: ")
|
|
|
|
|
print(f"Total number of k points: {kset.shape[0]}")
|
|
|
|
|
print(
|
|
|
|
|
f"Number of energy samples per k point: {simulation_parameters['eset']}"
|
|
|
|
|
)
|
|
|
|
|
print(f"Total number of directions: {len(hamiltonians)}")
|
|
|
|
|
print(
|
|
|
|
|
f"Total number of matrix inversions: {kset.shape[0] * len(hamiltonians) * simulation_parameters['eset']}"
|
|
|
|
|
)
|
|
|
|
|
print(
|
|
|
|
|
f"The shape of the Hamiltonian and the Greens function is {NO}x{NO}={NO*NO}"
|
|
|
|
|
)
|
|
|
|
|
# https://stackoverflow.com/questions/70746660/how-to-predict-memory-requirement-for-np-linalg-inv
|
|
|
|
|
# memory is O(64 n**2) for complex matrices
|
|
|
|
|
memory_size = getsizeof(hamiltonians[0]["H"].base) / 1024
|
|
|
|
|
print(
|
|
|
|
|
f"Memory taken by a single Hamiltonian is: {getsizeof(hamiltonians[0]['H'].base) / 1024} KB"
|
|
|
|
|
)
|
|
|
|
|
print(f"Expected memory usage per matrix inversion: {memory_size * 32} KB")
|
|
|
|
|
print(
|
|
|
|
|
f"Expected memory usage per k point for parallel inversion: {memory_size * len(hamiltonians) * simulation_parameters['eset'] * 32} KB"
|
|
|
|
|
)
|
|
|
|
|
print(
|
|
|
|
|
f"Expected memory usage on root node: {len(np.array_split(kset, size)[0]) * memory_size * len(hamiltonians) * simulation_parameters['eset'] * 32 / 1024} MB"
|
|
|
|
|
)
|
|
|
|
|
print(
|
|
|
|
|
"================================================================================================================================================================"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# MPI barrier
|
|
|
|
|
comm.Barrier()
|
|
|
|
|
|
|
|
|
|
# make energy contour
|
|
|
|
|
cont = make_contour(
|
|
|
|
|
emin=simulation_parameters["ebot"],
|
|
|
|
|
enum=simulation_parameters["eset"],
|
|
|
|
|
p=simulation_parameters["esetp"],
|
|
|
|
|
)
|
|
|
|
|
eran = cont.ze
|
|
|
|
|
|
|
|
|
|
# sampling the integrand on the contour and the BZ
|
|
|
|
|
for k in kpcs[rank]:
|
|
|
|
|
# weight of k point in BZ integral
|
|
|
|
|
wk = wkset[rank]
|
|
|
|
|
|
|
|
|
|
# iterate over reference directions
|
|
|
|
|
for i, hamiltonian_orientation in enumerate(hamiltonians):
|
|
|
|
|
# calculate Hamiltonian and Overlap matrix in a given k point
|
|
|
|
|
H = hamiltonian_orientation["H"]
|
|
|
|
|
HK, SK = hsk(H, ss, dh.sc_off, k)
|
|
|
|
|
|
|
|
|
|
if simulation_parameters["parallel_solver_for_Gk"]:
|
|
|
|
|
Gk = parallel_Gk(HK, SK, eran, simulation_parameters["eset"])
|
|
|
|
|
else:
|
|
|
|
|
# solve Greens function sequentially for the energies, because of memory bound
|
|
|
|
|
Gk = sequential_GK(HK, SK, eran, simulation_parameters["eset"])
|
|
|
|
|
|
|
|
|
|
# store the Greens function slice of the magnetic entities
|
|
|
|
|
for mag_ent in magnetic_entities:
|
|
|
|
|
idx = mag_ent["spin_box_indices"]
|
|
|
|
|
mag_ent["Gii_tmp"][i] += onsite_projection(Gk, idx, idx) * wk
|
|
|
|
|
|
|
|
|
|
for pair in pairs:
|
|
|
|
|
# add phase shift based on the cell difference
|
|
|
|
|
phase = np.exp(1j * 2 * np.pi * k @ pair["Ruc"].T)
|
|
|
|
|
|
|
|
|
|
# get the pair orbital sizes from the magnetic entities
|
|
|
|
|
ai = magnetic_entities[pair["ai"]]["spin_box_indices"]
|
|
|
|
|
aj = magnetic_entities[pair["aj"]]["spin_box_indices"]
|
|
|
|
|
|
|
|
|
|
# store the Greens function slice of the magnetic entities
|
|
|
|
|
pair["Gij_tmp"][i] += onsite_projection(Gk, ai, aj) * phase * wk
|
|
|
|
|
pair["Gji_tmp"][i] += onsite_projection(Gk, aj, ai) / phase * wk
|
|
|
|
|
|
|
|
|
|
# summ reduce partial results of mpi nodes
|
|
|
|
|
for i in range(len(hamiltonians)):
|
|
|
|
|
for mag_ent in magnetic_entities:
|
|
|
|
|
comm.Reduce(mag_ent["Gii_tmp"][i], mag_ent["Gii"][i], root=root_node)
|
|
|
|
|
|
|
|
|
|
for pair in pairs:
|
|
|
|
|
comm.Reduce(pair["Gij_tmp"][i], pair["Gij"][i], root=root_node)
|
|
|
|
|
comm.Reduce(pair["Gji_tmp"][i], pair["Gji"][i], root=root_node)
|
|
|
|
|
|
|
|
|
|
if rank == root_node:
|
|
|
|
|
times["green_function_inversion_time"] = timer()
|
|
|
|
|
print(
|
|
|
|
|
f"Calculated Greens functions. Elapsed time: {times['green_function_inversion_time']} s"
|
|
|
|
|
)
|
|
|
|
|
print(
|
|
|
|
|
"================================================================================================================================================================"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if rank == root_node:
|
|
|
|
|
# iterate over the magnetic entities
|
|
|
|
|
for tracker, mag_ent in enumerate(magnetic_entities):
|
|
|
|
|
# iterate over the quantization axes
|
|
|
|
|
for i, Gii in enumerate(mag_ent["Gii"]):
|
|
|
|
|
storage = []
|
|
|
|
|
# iterate over the first and second order local perturbations
|
|
|
|
|
for Vu1, Vu2 in zip(mag_ent["Vu1"][i], mag_ent["Vu2"][i]):
|
|
|
|
|
# The Szunyogh-Lichtenstein formula
|
|
|
|
|
traced = np.trace(
|
|
|
|
|
(Vu2 @ Gii + 0.5 * Gii @ Vu1 @ Gii), axis1=1, axis2=2
|
|
|
|
|
) # this is the on site projection
|
|
|
|
|
# evaluation of the contour integral
|
|
|
|
|
storage.append(int_de_ke(traced, cont.we))
|
|
|
|
|
# fill up the magnetic entities dictionary with the energies
|
|
|
|
|
magnetic_entities[tracker]["energies"].append(storage)
|
|
|
|
|
# convert to np array
|
|
|
|
|
magnetic_entities[tracker]["energies"] = np.array(
|
|
|
|
|
magnetic_entities[tracker]["energies"]
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# iterate over the pairs
|
|
|
|
|
for tracker, pair in enumerate(pairs):
|
|
|
|
|
# iterate over the quantization axes
|
|
|
|
|
for i, (Gij, Gji) in enumerate(zip(pair["Gij"], pair["Gji"])):
|
|
|
|
|
site_i = magnetic_entities[pair["ai"]]
|
|
|
|
|
site_j = magnetic_entities[pair["aj"]]
|
|
|
|
|
storage = []
|
|
|
|
|
# iterate over the first order local perturbations in all possible orientations for the two sites
|
|
|
|
|
for Vui in site_i["Vu1"][i]:
|
|
|
|
|
for Vuj in site_j["Vu1"][i]:
|
|
|
|
|
# The Szunyogh-Lichtenstein formula
|
|
|
|
|
traced = np.trace(
|
|
|
|
|
(Vui @ Gij @ Vuj @ Gji), axis1=1, axis2=2
|
|
|
|
|
) # this is the on site projection
|
|
|
|
|
# evaluation of the contour integral
|
|
|
|
|
storage.append(int_de_ke(traced, cont.we))
|
|
|
|
|
# fill up the pairs dictionary with the energies
|
|
|
|
|
pairs[tracker]["energies"].append(storage)
|
|
|
|
|
# convert to np array
|
|
|
|
|
pairs[tracker]["energies"] = np.array(pairs[tracker]["energies"])
|
|
|
|
|
|
|
|
|
|
# calculate magnetic parameters
|
|
|
|
|
for mag_ent in magnetic_entities:
|
|
|
|
|
K, consistency = calculate_anisotropy_tensor(mag_ent)
|
|
|
|
|
mag_ent["K"] = K * sisl.unit_convert("eV", "meV")
|
|
|
|
|
mag_ent["K_consistency"] = consistency
|
|
|
|
|
|
|
|
|
|
for pair in pairs:
|
|
|
|
|
J_iso, J_S, D, J = calculate_exchange_tensor(pair)
|
|
|
|
|
pair["J_iso"] = J_iso * sisl.unit_convert("eV", "meV")
|
|
|
|
|
pair["J_S"] = J_S * sisl.unit_convert("eV", "meV")
|
|
|
|
|
pair["D"] = D * sisl.unit_convert("eV", "meV")
|
|
|
|
|
pair["J"] = J * sisl.unit_convert("eV", "meV")
|
|
|
|
|
|
|
|
|
|
times["end_time"] = timer()
|
|
|
|
|
print("\n\n\n\n\n")
|
|
|
|
|
print(
|
|
|
|
|
"##################################################################### GROGU OUTPUT #############################################################################"
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
print_parameters(simulation_parameters)
|
|
|
|
|
print_atoms_and_pairs(magnetic_entities, pairs)
|
|
|
|
|
print(
|
|
|
|
|
"################################################################################################################################################################"
|
|
|
|
|
)
|
|
|
|
|
print_runtime_information(times)
|
|
|
|
|
print("")
|
|
|
|
|
|
|
|
|
|
# remove unwanted stuff before saving
|
|
|
|
|
pairs, magnetic_entities = remove_clutter_for_save(pairs, magnetic_entities)
|
|
|
|
|
# create output dictionary with all the relevant data
|
|
|
|
|
results = dict(
|
|
|
|
|
parameters=simulation_parameters,
|
|
|
|
|
magnetic_entities=magnetic_entities,
|
|
|
|
|
pairs=pairs,
|
|
|
|
|
runtime=times,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# save results
|
|
|
|
|
save_pickle(simulation_parameters["outfile"], results)
|
|
|
|
|
|
|
|
|
|
print("\n\n\n\n\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
# loading parameters
|
|
|
|
|
# it is not clear how to give grogu.fdf path...
|
|
|
|
|
# command_line_arguments = parse_command_line()
|
|
|
|
|
# fdf_arguments, magnetic_entities, pairs = read_fdf(command_line_arguments["infile"])
|
|
|
|
|
|
|
|
|
|
# right now we do not use any of these input, but it shows
|
|
|
|
|
# the order of priority when processing arguments
|
|
|
|
|
default_arguments = False
|
|
|
|
|
fdf_arguments = False
|
|
|
|
|
command_line_arguments = False
|
|
|
|
|
# simulation_parameters = process_input_args(
|
|
|
|
|
# default_arguments, fdf_arguments, command_line_arguments, ACCEPTED_INPUTS
|
|
|
|
|
# )
|
|
|
|
|
|
|
|
|
|
####################################################################################################
|
|
|
|
|
# This is the input file for now #
|
|
|
|
|
####################################################################################################
|
|
|
|
|
magnetic_entities = [
|
|
|
|
|
dict(atom=3, l=2),
|
|
|
|
|
dict(atom=4, l=2),
|
|
|
|
|
dict(atom=5, l=2),
|
|
|
|
|
]
|
|
|
|
|
pairs = [
|
|
|
|
|
dict(ai=0, aj=1, Ruc=np.array([0, 0, 0])),
|
|
|
|
|
dict(ai=0, aj=2, Ruc=np.array([0, 0, 0])),
|
|
|
|
|
dict(ai=1, aj=2, Ruc=np.array([0, 0, 0])),
|
|
|
|
|
dict(ai=0, aj=2, Ruc=np.array([-1, -1, 0])),
|
|
|
|
|
dict(ai=1, aj=2, Ruc=np.array([-1, -1, 0])),
|
|
|
|
|
dict(ai=0, aj=2, Ruc=np.array([-1, 0, 0])),
|
|
|
|
|
dict(ai=1, aj=2, Ruc=np.array([-1, 0, 0])),
|
|
|
|
|
dict(ai=1, aj=2, Ruc=np.array([-2, 0, 0])),
|
|
|
|
|
dict(ai=1, aj=2, Ruc=np.array([-3, 0, 0])),
|
|
|
|
|
]
|
|
|
|
|
simulation_parameters = dict()
|
|
|
|
|
simulation_parameters["infile"] = ""
|
|
|
|
|
simulation_parameters["outfile"] = "./"
|
|
|
|
|
simulation_parameters["scf_xcf_orientation"] = np.array([0, 0, 1])
|
|
|
|
|
simulation_parameters["ref_xcf_orientations"] = [
|
|
|
|
|
dict(o=np.array([1, 0, 0]), vw=[np.array([0, 1, 0]), np.array([0, 0, 1])]),
|
|
|
|
|
dict(o=np.array([0, 1, 0]), vw=[np.array([1, 0, 0]), np.array([0, 0, 1])]),
|
|
|
|
|
dict(o=np.array([0, 0, 1]), vw=[np.array([1, 0, 0]), np.array([0, 1, 0])]),
|
|
|
|
|
]
|
|
|
|
|
simulation_parameters["kset"] = 0
|
|
|
|
|
simulation_parameters["kdirs"] = ""
|
|
|
|
|
simulation_parameters["ebot"] = None
|
|
|
|
|
simulation_parameters["eset"] = 0
|
|
|
|
|
simulation_parameters["esetp"] = 0
|
|
|
|
|
simulation_parameters["parallel_solver_for_Gk"] = False
|
|
|
|
|
simulation_parameters["padawan_mode"] = True
|
|
|
|
|
####################################################################################################
|
|
|
|
|
# This is the input file for now #
|
|
|
|
|
####################################################################################################
|
|
|
|
|
|
|
|
|
|
main(simulation_parameters, magnetic_entities, pairs)
|