You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
grogu/test.ipynb

899 lines
82 KiB

3 months ago
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
3 months ago
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[Mac:27855] shmem: mmap: an error occurred while determining whether or not /var/folders/yh/dx7xl94n3g52ts3td8qcxjcc0000gn/T//ompi.Mac.501/jf.0/204800000/sm_segment.Mac.501.c350000.0 could be created.\n"
]
},
{
"data": {
"text/plain": [
"'0.14.3'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
3 months ago
"source": [
"import os\n",
"from tqdm import tqdm\n",
"from sys import getsizeof\n",
"from timeit import default_timer as timer\n",
"\n",
"os.environ[\"OMP_NUM_THREADS\"] = \"1\" # export OMP_NUM_THREADS=4\n",
"os.environ[\"OPENBLAS_NUM_THREADS\"] = \"1\" # export OPENBLAS_NUM_THREADS=4\n",
"os.environ[\"MKL_NUM_THREADS\"] = \"1\" # export MKL_NUM_THREADS=6\n",
"os.environ[\"VECLIB_MAXIMUM_THREADS\"] = \"1\" # export VECLIB_MAXIMUM_THREADS=4\n",
"os.environ[\"NUMEXPR_NUM_THREADS\"] = \"1\" # export NUMEXPR_NUM_THREADS=6\n",
"\n",
3 months ago
"import numpy as np\n",
"import sisl\n",
"from src.grogu_magn.useful import *\n",
3 months ago
"from mpi4py import MPI\n",
"import pickle\n",
3 months ago
"from numpy.linalg import inv\n",
"import warnings\n",
"\n",
"# runtime information\n",
"times = dict()\n",
"times[\"start_time\"] = timer()\n",
"########################\n",
3 months ago
"# it works if data is in downloads folder\n",
"########################\n",
"sisl.__version__"
3 months ago
]
},
{
"cell_type": "code",
"execution_count": 2,
3 months ago
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================================================================================================================================================\n",
"Input file: \n",
"Not yet specified.\n",
"Output file: \n",
"test.pickle\n",
"Number of nodes in the parallel cluster: 1\n",
"================================================================================================================================================================\n",
"Cell [Ang]: \n",
"[[ 3.79100000e+00 0.00000000e+00 0.00000000e+00]\n",
" [-1.89550000e+00 3.28310231e+00 0.00000000e+00]\n",
" [ 1.25954923e-15 2.18160327e-15 2.05700000e+01]]\n",
"================================================================================================================================================================\n",
"DFT axis: \n",
"[0 0 1]\n",
"Quantization axis and perpendicular rotation directions:\n",
"[1 0 0] --» [array([0, 1, 0]), array([0, 0, 1])]\n",
"[0 1 0] --» [array([1, 0, 0]), array([0, 0, 1])]\n",
"[0 0 1] --» [array([1, 0, 0]), array([0, 1, 0])]\n",
"================================================================================================================================================================\n",
"Parameters for the contour integral:\n",
"Number of k points: 20\n",
"k point directions: xy\n",
"Ebot: -13\n",
"Eset: 100\n",
"Esetp: 100\n",
"================================================================================================================================================================\n",
"Setup done. Elapsed time: 1.811041458 s\n",
"================================================================================================================================================================\n"
]
}
],
3 months ago
"source": [
"# this cell mimicks an input file\n",
"fdf = sisl.get_sile(\n",
" \"/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf\"\n",
") # ./Jij_for_Marci_6p45ang/CrBr.fdf\n",
"\n",
"outfile = \"test\"\n",
"if not outfile.endswith(\".pickle\"):\n",
" outfile += \".pickle\"\n",
3 months ago
"# this information needs to be given at the input!!\n",
"scf_xcf_orientation = np.array([0, 0, 1]) # z\n",
3 months ago
"# list of reference directions for around which we calculate the derivatives\n",
"# o is the quantization axis, v and w are two axes perpendicular to it\n",
"# at this moment the user has to supply o,v,w on the input.\n",
3 months ago
"# we can have some default for this\n",
"ref_xcf_orientations = [\n",
" dict(o=np.array([1, 0, 0]), vw=[np.array([0, 1, 0]), np.array([0, 0, 1])]),\n",
" dict(o=np.array([0, 1, 0]), vw=[np.array([1, 0, 0]), np.array([0, 0, 1])]),\n",
" dict(o=np.array([0, 0, 1]), vw=[np.array([1, 0, 0]), np.array([0, 1, 0])]),\n",
"]\n",
3 months ago
"\n",
"\n",
"# human readable definition of magnetic entities ./lat3_791/Fe3GeTe2.fdf\n",
"magnetic_entities = [\n",
" dict(atom=3, l=2),\n",
" dict(atom=4, l=2),\n",
" dict(atom=5, l=2),\n",
"]\n",
"# pair information ./lat3_791/Fe3GeTe2.fdf\n",
"pairs = [\n",
" # isotropic should be -82 meV\n",
" dict(ai=0, aj=1, Ruc=np.array([0, 0, 0])),\n",
" dict(ai=1, aj=2, Ruc=np.array([0, 0, 0])),\n",
" dict(ai=0, aj=2, Ruc=np.array([0, 0, 0])),\n",
"]\n",
"\n",
"\"\"\"\n",
"# human readable definition of magnetic entities ./Jij_for_Marci_6p45ang/CrBr.fdf\n",
"magnetic_entities = [\n",
" dict(atom=0, l=2),\n",
" dict(atom=1, l=2),\n",
" dict(atom=2, l=2),\n",
"]\n",
"# pair information ./Jij_for_Marci_6p45ang/CrBr.fdf\n",
"pairs = [\n",
" dict(ai=0, aj=1, Ruc=np.array([0, 0, 0])),\n",
" dict(ai=0, aj=2, Ruc=np.array([0, 0, 0])),\n",
" dict(ai=1, aj=2, Ruc=np.array([0, 0, 0])),\n",
" dict(ai=0, aj=1, Ruc=np.array([1, 0, 0])),\n",
" dict(ai=0, aj=2, Ruc=np.array([1, 0, 0])),\n",
" dict(ai=0, aj=1, Ruc=np.array([-1, 0, 0])),\n",
" dict(ai=0, aj=2, Ruc=np.array([-1, 0, 0])),\n",
" dict(ai=0, aj=1, Ruc=np.array([0, 1, 0])),\n",
" dict(ai=0, aj=2, Ruc=np.array([0, 1, 0])),\n",
" dict(ai=0, aj=1, Ruc=np.array([0, 1, 0])),\n",
" dict(ai=0, aj=2, Ruc=np.array([0, 1, 0])),\n",
"]\n",
"\"\"\"\n",
"\n",
3 months ago
"# Brilloun zone sampling and Green function contour integral\n",
"kset = 20\n",
3 months ago
"kdirs = \"xy\"\n",
"ebot = -13\n",
"eset = 100\n",
"esetp = 100\n",
3 months ago
"\n",
"\n",
"# MPI parameters\n",
"comm = MPI.COMM_WORLD\n",
"size = comm.Get_size()\n",
"rank = comm.Get_rank()\n",
"root_node = 0\n",
"\n",
"simulation_parameters = dict(\n",
" path=\"Not yet specified.\",\n",
" outpath=outfile,\n",
" scf_xcf_orientation=scf_xcf_orientation,\n",
" ref_xcf_orientations=ref_xcf_orientations,\n",
" kset=kset,\n",
" kdirs=kdirs,\n",
" ebot=ebot,\n",
" eset=eset,\n",
" esetp=esetp,\n",
" parallel_size=size,\n",
")\n",
"\n",
"# digestion of the input\n",
"# read in hamiltonian\n",
"dh = fdf.read_hamiltonian()\n",
"simulation_parameters[\"cell\"] = fdf.read_geometry().cell\n",
"\n",
"# unit cell index\n",
"uc_in_sc_idx = dh.lattice.sc_index([0, 0, 0])\n",
"\n",
"if rank == root_node:\n",
" print_parameters(simulation_parameters)\n",
" times[\"setup_time\"] = timer()\n",
" print(f\"Setup done. Elapsed time: {times['setup_time']} s\")\n",
" print(\n",
" \"================================================================================================================================================================\"\n",
" )"
3 months ago
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/danielpozsar/Documents/oktatás/elte/phd/grogu_project/.venv/lib/python3.9/site-packages/matplotlib/cbook.py:1762: ComplexWarning: Casting complex values to real discards the imaginary part\n",
" return math.isfinite(val)\n",
"/Users/danielpozsar/Documents/oktatás/elte/phd/grogu_project/.venv/lib/python3.9/site-packages/matplotlib/cbook.py:1398: ComplexWarning: Casting complex values to real discards the imaginary part\n",
" return np.asarray(x, float)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"-12.806739\n",
"-0.01254111\n",
"xyz[-3:]: red, green, blue\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGiCAYAAAAba+fDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3T0lEQVR4nO3deXhU9aH/8c9km5BtQvYEEkgAQfZFjHErKrJorSi1bq1g3YWqoK3SX0XBalx6tddeqn1uRbRWqfa6VNuqiCxawhaIC0sEDCRAFkhIJguZJDPn9wdmdCRAApk5M5P363nmeZgzZ5JPjieZj9/zPedYDMMwBAAAECRCzA4AAADQnSg3AAAgqFBuAABAUKHcAACAoEK5AQAAQYVyAwAAggrlBgAABBXKDQAACCqUGwAAEFQoNwAAIKh4tdzk5+dr/Pjxio2NVUpKiqZNm6bi4mKPdZqbmzVr1iwlJiYqJiZG06dPV2VlpTdjAQCAIObVcrNq1SrNmjVLa9eu1bJly9Ta2qpJkyapsbHRvc6cOXP07rvv6o033tCqVau0f/9+XXnlld6MBQAAgpjFlzfOPHDggFJSUrRq1Sqdf/75qqurU3Jysl599VX9+Mc/liRt375dp59+ugoKCnTWWWf5KhoAAAgSYb78ZnV1dZKkhIQESVJhYaFaW1s1ceJE9zpDhgxRVlbWMcuNw+GQw+FwP3e5XKqpqVFiYqIsFouXfwIAANAdDMNQfX29MjIyFBLSvQeSfFZuXC6X7rnnHp1zzjkaPny4JKmiokIRERGKj4/3WDc1NVUVFRUdfp38/HwtWLDA23EBAIAPlJWVqW/fvt36NX1WbmbNmqUvv/xSn3766Sl9nXnz5mnu3Lnu53V1dcrKylJZWZni4uJONSYAdAuXy1De48vV6HDqrTvP1qDUWLMjAX7FbrcrMzNTsbHd/7vhk3Ize/Zsvffee1q9erVHO0tLS1NLS4tqa2s9Rm8qKyuVlpbW4deyWq2yWq1HLY+Li6PcAPAbpdVNOiyrIqNCNDInXeGhXHkD6Ig3ppR49bfNMAzNnj1bb731lj7++GNlZ2d7vD5u3DiFh4dr+fLl7mXFxcUqLS1VXl6eN6MBgFdtLbdLkgalxlBsAB/z6sjNrFmz9Oqrr+qdd95RbGysex6NzWZTr169ZLPZdNNNN2nu3LlKSEhQXFycfvGLXygvL48zpQAEtG3flJvT0xlRBnzNq+XmueeekyRNmDDBY/mLL76omTNnSpKeeeYZhYSEaPr06XI4HJo8ebL++Mc/ejMWAHiVo82p9SU1kig3gBl8ep0bb7Db7bLZbKqrq2PODQBTtTpd+tcX5frdh8UqqzksSfrH7HM0sm+8ucEAP+TNz2+fXucGAIJNq9Ol9z7frw+3VOrTHQdV72iTJKXEWvXA1CEUG8AElBsAOAkul6F3P9+vZ5Z9pd3VTe7lidERmnF2f918XraiIvgTC5iB3zwAOAm3v1KoD7ceuclvYnSErj+rny4ckqKRfWwKCeFq6YCZKDcA0EWtTpc+3l4lSbr7okG69fwcRVv5cwr4C34bAaCL9tceVpvLUERYiO6+aBAjNYCf4cpSANBFe76ZY5OVEEWxAfwQ5QYAumhPzZFy0z8xyuQkADpCuQGALiqtbpQkZSVEm5wEQEcoNwDQRe2HpfoxcgP4JcoNAHRR6TeHpbIoN4BfotwAQBcYhvHtyE0C5QbwR5QbAOiCA/UOHW51KsQi9e1NuQH8EeUGALqg/UypjPheigjjTyjgj/jNBIAuYDIx4P8oNwDQBZwGDvg/yg0AdEH7YSlGbgD/RbkBgC7gTCnA/1FuAKAL9nxzWKpfIoelAH9FuQGATrI3t+pQU6skLuAH+DPKDQB0Uuk3h6SSYiIUYw0zOQ2AY6HcAEAntc+3yWK+DeDXKDcA0El7aphvAwQCyg0AdEJVfbPe2rRPEqeBA/6Og8YAcAJlNU366QvrtKe6ScmxVv14XF+zIwE4DsoNABzH3kNNuur5AlXYm5WZ0Et/veksbpgJ+DnKDQAcQ5vTpXuWFqnC3qxBKTF65eZcpcZFmh0LwAkw5wYAjmHRil3auOeQYqxhWjxzPMUGCBCUGwDoQOGeQ3r24x2SpEemDVMmp38DAYNyAwDfU1HXrLte2yyny9DlozN0xRgmEAOBhHIDAN9R3eDQ9X9eq321h9U/MUqPTBtudiQAXUS5AYBv1B1u1c9eWK9dBxqVbovUKzfnKi4y3OxYALqIcgMAkgzD0F2vbdbWcruSYiL015tzOeUbCFCUGwCQtHRDmVZ9dUDWsBC9/PNc5STHmB0JwEmi3ADo8fYeatJv39sqSfrl5MEamhFnciIAp4JyA6BHc7kM/ervn6uxxakz+vXWjedkmx0JwCmi3ADo0f5euFdrdlUrMjxET101SqEhFrMjAThFlBsAPVaDo01PflAsSZp78WnKToo2ORGA7kC5AdBjPbdypw42ONQ/MUozz+ZwFBAsvFpuVq9ercsuu0wZGRmyWCx6++23PV6fOXOmLBaLx2PKlCnejAQAko5MIv7fT0okSfMuOV0RYfy/HhAsvPrb3NjYqFGjRmnRokXHXGfKlCkqLy93P1577TVvRgIASdKT7xerpc2l3OwETRqaanYcAN0ozJtffOrUqZo6depx17FarUpLS/NmDADwsOtAg/7x2X5ZLNKDPxwqi4VJxEAwMX0cduXKlUpJSdHgwYN1xx13qLq6+rjrOxwO2e12jwcAdMUbG/dKki4cnKLhfWwmpwHQ3UwtN1OmTNHLL7+s5cuX64knntCqVas0depUOZ3OY74nPz9fNpvN/cjMzPRhYgCBrs3p0pubjpSbq87gbt9AMPLqYakTueaaa9z/HjFihEaOHKkBAwZo5cqVuuiiizp8z7x58zR37lz3c7vdTsEB0Gmf7DioqnqHEqIjdOEQ5toAwcj0w1LflZOTo6SkJO3cufOY61itVsXFxXk8AKCz3igskyRdPjqDM6SAIOVXv9l79+5VdXW10tPTzY4CIAjVNLZo2dZKSdJV4xjxBYKVVw9LNTQ0eIzClJSUqKioSAkJCUpISNCCBQs0ffp0paWladeuXfrVr36lgQMHavLkyd6MBaCH+r/CvWp1GhreJ46bYwJBzKvlZuPGjbrgggvcz9vnysyYMUPPPfecPv/8c7300kuqra1VRkaGJk2apEceeURWq9WbsQAEuQZHmz7dcVBV9c1qbnWqyu7Qyq8OaGdVgyRGbYBg59VyM2HCBBmGcczXP/jgA29+ewBBrL65VfXNbTIkHW5xqrSmUSUHm1Swq1qrdxxQS5vrqPeEhVg0eViafnIG5QYIZqaeLQUAXVVlb9Z/L9+hpRvK5HQd+3+e+idGaUhanKIiQhVtDdOZ2Qn6weBkxUWG+zAtADNQbgD4tS/31emVtXvU0uZSi9Ol5duqdLj1yLWwIkJDZLFI4aEhykyIUnZSlE5Pi9OkYWk6LTWGKw8DPRTlBoBfW/DuFm3Yfchj2ZiseD0wZYhycxJNSgXAn1FuAPitwy1OFZXVSpLmTDxN0dZQDUiJ0YTTkhmVAXBMlBsAfmtT6SG1Og1l2CJ110UDKTQAOsWvLuIHAN+17usjN9LNzUmk2ADoNMoNAL+1tqRGkpSbnWByEgCBhHIDwC81t3473+ZMyg2ALqDcAPBLRWW1amlzKTnWquykaLPjAAgglBsAfmnd198ekmK+DYCuoNwA8EvrSr6dTAwAXUG5AeB3Wtpc2lR65MJ9ZzHfBkAXUW4A+J2Ne2rU3OpSYnSEBqbEmB0HQICh3ADwK+9/Wa7b/lIoSTpnYBLzbQB0GVcoBmCaspomrSyuUnFlvVrbDFU3OvTRtipJ0ujMeP36ktNNTgggEFFuAPhUS5tLf9tQqiVrdmvXgcYO17ntBzm6b9JghYcyuAyg6yg3AHziQL1DH26t0B9X7NK+2sOSpNAQi8b1663x/XurV3iowkJDNL5/b43rxyRiACePcgPAqz7YUqE/fLxDX+6zu5elxFo1+8KBmjamj+Iiw01MByAYUW4AeE1tU4t+8epmtThdkqT
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABNoAAAHACAYAAAB0/gUQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCsElEQVR4nO3df5hWdZ0//ucMyAwWM2rK8GMnf5b4E0iTMFu1Rln1YmU/5aLtAktqW9l+VLYfUiqWJqlpbEayaUbq9vG35ie9IGUjM1lNlNZMTRSElEH9qjOICjJzf//g47QToAOcmXtmeDyu61x5n/u87/v1PkznNfdzzn1ORalUKgUAAAAA2CqV5S4AAAAAAHoDQRsAAAAAFEDQBgAAAAAFELQBAAAAQAEEbQAAAABQAEEbAAAAABRA0AYAAAAABRC0AQAAAEAB+pa7gO6otbU1zz//fAYMGJCKiopylwPQ45VKpaxatSpDhgxJZaW/8egzAMXSZzak1wAUq6O9RtC2Ec8//3zq6+vLXQZAr7N8+fL81V/9VbnLKDt9BqBz6DN/ptcAdI536zWCto0YMGBAkvU7r6ampszVAPR8zc3Nqa+vbzu+buv0GYBi6TMb0msAitXRXiNo24i3T62uqanRlAAK5Ksr6+kzAJ1Dn/kzvQagc7xbr3EBAwAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAAChA33IX0KusWJHMnp388Y/JgAHJCSckhx2WVFSUuzIAeoM330xuvDG59971veXww5NPfSqpri53ZQAA0C2tW5fccUcyd+76//7wh5N/+If1sU1nELQV5fLLkzPPTEqlpLLyz+uOOCK5/faktrac1QHQ0/32t8lxxyUvvpj0/X/t+6qrki99KbnrruRDHypvfQAA0M0sXpyMGZM888yff4X+8Y+TL385ueWW5Oiji39PXx0twq23Jv/7fyctLUlr6/qIdN269c/9+tfJ+PHlrQ+Anm3FiuSoo5KXX17/+H/2mZdeShoakhdeKF99AADQzbz+evLxjyfPPrv+8du/QpdK658bOzb5wx+Kf19B29YqlZJvfGPTXw9taVl/fuKiRV1aFgC9yKxZyWuvre8pf6mlJWlqWn92GwAAkCS54YZk+fKN/wrd2rp++bd/K/59BW1b67nnkv/+7/WB26b07bv+66MAsCVuumnjvyG8rbV1/TYAAECS9V8+rHyH1GvduvWXPy6aoG1rvf76u29TUZG88Ubn1wJA77R6dTHbAADANmL16vV/j34nb75Z/PsK2rZWfX3ynve88zZvvZXsv3/X1ANA7zNy5J+v3roxffuu3wYAAEiSDB/+zr9CV1Z2TlQjaNta/fsnJ5+c9Omz8ecrKpIddkhOOKFLywKgF/nCF/5884ONWbcu+fznu64eAADo5v75n9/5V+jW1uSLXyz+fQVtRfjmN5NhwzYM2/r0Wb/8x38k1dXlqQ2Anu+oo5LTTlv/3//z5jtvX3RiypTkiCO6vCwAAOiuhg1LLr54/X//z2u1VVSsX/7X/0r+8R+Lf19BWxFqa5Pf/CY566xkp53Wr6usXH+v2PvvT449trz1AdCzVVQkl1+e/PjHyb77/nn9/vsn116bfOc75asNAAC6qS9/OfnZz5KPfOTP63bfff3dRm+8cdNfTtwaFaXSO90uc9vU3Nyc2traNDU1paamZvMGt7YmTU3J9tsnVVWdUyBAD7NVx9VeaKv3R3Pz+vBtwIDiiwPogfSZDdknAO2tXr3+q6Q1Ne2/JNJRHT2uvsNl4dgilZXJjjuWuwoAejMfmAAAYLO8230si+KrowAAAABQAEEbAAAAABRA0AYAAAAABRC0AQAAAEABBG0AAAAAUABBGwAAAAAUQNAGAAAAAAUQtAEAAABAAQRtAAAAAFCAsgZt9957b8aOHZshQ4akoqIit99+e7vnb7311hx99NF53/vel4qKiixatOhdX3P27NmpqKhot1RXV3fOBADo1vQZAACgK5U1aFu9enWGDx+emTNnbvL5ww47LBdddNFmvW5NTU1WrFjRtjz77LNFlAtAD6PPAAAAXalvOd/8mGOOyTHHHLPJ5ydMmJAkWbp06Wa9bkVFRQYNGrQ1pQHQC+gzAABAV+qV12h77bXXsuuuu6a+vj7HH398HnvssXfcfs2aNWlubm63AMCm6DMAAMDG9Lqgbe+9987VV1+dn/3sZ7nuuuvS2tqaQw89NH/60582OWb69Ompra1tW+rr67uwYgB6En0GAADYlF4XtI0ePToTJ07MiBEjcvjhh+fWW2/NLrvskn//93/f5JipU6emqampbVm+fHkXVgxAT6LPAAAAm1LWa7R1he222y4jR47M4sWLN7lNVVVVqqqqurAqAHoLfQYAAHhbrzuj7S+1tLTk0UcfzeDBg8tdCgC9kD4DAAC8raxntL322mvtzgBYsmRJFi1alJ122invf//78/LLL2fZsmV5/vnnkyRPPvlkkmTQoEFtd3ubOHFihg4dmunTpydJvvnNb+YjH/lI9tprr7z66qu55JJL8uyzz+aUU07p4tkBUG76DAAA0JXKGrQ99NBDOfLII9seT5kyJUkyadKkzJ49O3fccUcmT57c9vyJJ56YJJk2bVrOO++8JMmyZctSWfnnE/NeeeWVnHrqqWlsbMyOO+6Ygw46KPfff3/23XffLpgRAN2JPgMAAHSlilKpVCp3Ed1Nc3Nzamtr09TUlJqamnKXA9DjOa62Z38AFKu7H1fvvffeXHLJJVm4cGFWrFiR2267LePGjXvHMfPnz8+UKVPy2GOPpb6+PmeffXb+6Z/+qcPv2d33CUBP09Hjaq+/RhsAAEA5rV69OsOHD8/MmTM7tP2SJUty3HHH5cgjj8yiRYtyxhln5JRTTsncuXM7uVIAtlavv+soAABAOR1zzDE55phjOrz9rFmzsvvuu+fSSy9Nkuyzzz6577778t3vfjdjxozprDIBKIAz2gAAALqRBQsWpKGhod26MWPGZMGCBZscs2bNmjQ3N7dbAOh6gjYAAIBupLGxMXV1de3W1dXVpbm5OW+88cZGx0yfPj21tbVtS319fVeUCsBfELQBAAD0cFOnTk1TU1Pbsnz58nKXBLBNco02AACAbmTQoEFZuXJlu3UrV65MTU1N+vfvv9ExVVVVqaqq6oryAHgHzmgDAADoRkaPHp158+a1W3f33Xdn9OjRZaoIgI4StAEAAHSi1157LYsWLcqiRYuSJEuWLMmiRYuybNmyJOu/9jlx4sS27T/3uc/lmWeeyVe+8pU88cQT+cEPfpAbb7wxZ555ZjnKB2AzCNoAAAA60UMPPZSRI0dm5MiRSZIpU6Zk5MiROffcc5MkK1asaAvdkmT33XfPnXfembvvvjvDhw/PpZdemquuuipjxowpS/0AdJxrtAEAAHSiI444IqVSaZPPz549e6NjHnnkkU6sCoDO4Iw2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAAgjaAAAAAKAAgjYAAAAAKICgDQAAAAAKIGgDAAAAgAII2gAAAACgAII2AAAAACiAoA0AAAAACiBoAwAAAIACCNoAAAAAoACCNgAAAAAogKANAAAAAAogaAMAAACAApQ1aLv33nszduzYDBkyJBUVFbn99tvbPX/rrbfm6KOPzvve975UVFRk0aJFHXrdm266KcOGDUt1dXUOOOCA3HXXXcUXD0C3p88AAABdqaxB2+rVqzN
"text/plain": [
"<Figure size 1500x500 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"plt.plot(np.sort(dh.eig()))\n",
"plt.ylim(None, 20)\n",
"print(np.real(dh.eig()).min())\n",
"print(np.imag(dh.eig()).min())\n",
"\n",
"import matplotlib.pyplot as plt\n",
"\n",
"coords = dh.xyz[-3:]\n",
"\n",
"\n",
"plt.figure(figsize=(15, 5))\n",
"plt.subplot(131)\n",
"plt.scatter(coords[:, 0], coords[:, 2], color=[\"r\", \"g\", \"b\"])\n",
"plt.xlabel(\"x\")\n",
"plt.ylabel(\"z\")\n",
"plt.subplot(132)\n",
"plt.scatter(coords[:, 1], coords[:, 2], color=[\"r\", \"g\", \"b\"])\n",
"plt.xlabel(\"y\")\n",
"plt.ylabel(\"z\")\n",
"plt.subplot(133)\n",
"plt.scatter(coords[:, 0], coords[:, 1], color=[\"r\", \"g\", \"b\"])\n",
"plt.xlabel(\"x\")\n",
"plt.ylabel(\"y\")\n",
"print(\"xyz[-3:]: red, green, blue\")"
]
},
{
"cell_type": "code",
"execution_count": null,
3 months ago
"metadata": {},
3 months ago
"outputs": [],
3 months ago
"source": [
"NO = dh.no # shorthand for number of orbitals in the unit cell\n",
3 months ago
"\n",
3 months ago
"# preprocessing Hamiltonian and overlap matrix elements\n",
"h11 = dh.tocsr(dh.M11r)\n",
"h11 += dh.tocsr(dh.M11i) * 1.0j\n",
"h11 = h11.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype(\"complex128\")\n",
3 months ago
"\n",
"h22 = dh.tocsr(dh.M22r)\n",
"h22 += dh.tocsr(dh.M22i) * 1.0j\n",
"h22 = h22.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype(\"complex128\")\n",
3 months ago
"\n",
"h12 = dh.tocsr(dh.M12r)\n",
"h12 += dh.tocsr(dh.M12i) * 1.0j\n",
"h12 = h12.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype(\"complex128\")\n",
3 months ago
"\n",
"h21 = dh.tocsr(dh.M21r)\n",
"h21 += dh.tocsr(dh.M21i) * 1.0j\n",
"h21 = h21.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype(\"complex128\")\n",
3 months ago
"\n",
"sov = (\n",
" dh.tocsr(dh.S_idx)\n",
" .toarray()\n",
" .reshape(NO, dh.n_s, NO)\n",
" .transpose(0, 2, 1)\n",
" .astype(\"complex128\")\n",
")\n",
3 months ago
"\n",
"\n",
3 months ago
"# Reorganization of Hamiltonian and overlap matrix elements to SPIN BOX representation\n",
"U = np.vstack(\n",
" [np.kron(np.eye(NO, dtype=int), [1, 0]), np.kron(np.eye(NO, dtype=int), [0, 1])]\n",
")\n",
3 months ago
"# This is the permutation that transforms ud1ud2 to u12d12\n",
"# That is this transforms FROM SPIN BOX to ORBITAL BOX => U\n",
"# the inverse transformation is U.T u12d12 to ud1ud2\n",
"# That is FROM ORBITAL BOX to SPIN BOX => U.T\n",
"\n",
3 months ago
"# From now on everything is in SPIN BOX!!\n",
"hh, ss = np.array(\n",
" [\n",
" U.T @ np.block([[h11[:, :, i], h12[:, :, i]], [h21[:, :, i], h22[:, :, i]]]) @ U\n",
" for i in range(dh.lattice.nsc.prod())\n",
" ]\n",
"), np.array(\n",
" [\n",
" U.T\n",
" @ np.block([[sov[:, :, i], sov[:, :, i] * 0], [sov[:, :, i] * 0, sov[:, :, i]]])\n",
" @ U\n",
" for i in range(dh.lattice.nsc.prod())\n",
" ]\n",
")\n",
"\n",
"\n",
"# symmetrizing Hamiltonian and overlap matrix to make them hermitian\n",
3 months ago
"for i in range(dh.lattice.sc_off.shape[0]):\n",
" j = dh.lattice.sc_index(-dh.lattice.sc_off[i])\n",
" h1, h1d = hh[i], hh[j]\n",
" hh[i], hh[j] = (h1 + h1d.T.conj()) / 2, (h1d + h1.T.conj()) / 2\n",
" s1, s1d = ss[i], ss[j]\n",
" ss[i], ss[j] = (s1 + s1d.T.conj()) / 2, (s1d + s1.T.conj()) / 2\n",
3 months ago
"\n",
"# identifying TRS and TRB parts of the Hamiltonian\n",
"TAUY = np.kron(np.eye(NO), tau_y)\n",
"hTR = np.array([TAUY @ hh[i].conj() @ TAUY for i in range(dh.lattice.nsc.prod())])\n",
"hTRS = (hh + hTR) / 2\n",
"hTRB = (hh - hTR) / 2\n",
3 months ago
"\n",
"# extracting the exchange field\n",
"traced = [spin_tracer(hTRB[i]) for i in range(dh.lattice.nsc.prod())] # equation 77\n",
"XCF = np.array(\n",
" [\n",
" np.array([f[\"x\"] for f in traced]),\n",
" np.array([f[\"y\"] for f in traced]),\n",
" np.array([f[\"z\"] for f in traced]),\n",
" ]\n",
") # equation 77\n",
3 months ago
"\n",
3 months ago
"# Check if exchange field has scalar part\n",
"max_xcfs = abs(np.array(np.array([f[\"c\"] for f in traced]))).max()\n",
"if max_xcfs > 1e-12:\n",
" warnings.warn(\n",
" f\"Exchange field has non negligible scalar part. Largest value is {max_xcfs}\"\n",
" )\n",
"\n",
"if rank == root_node:\n",
" times[\"H_and_XCF_time\"] = timer()\n",
" print(\n",
" f\"Hamiltonian and exchange field rotated. Elapsed time: {times['H_and_XCF_time']} s\"\n",
" )\n",
" print(\n",
" \"================================================================================================================================================================\"\n",
" )"
3 months ago
]
},
{
"cell_type": "code",
"execution_count": null,
3 months ago
"metadata": {},
3 months ago
"outputs": [],
3 months ago
"source": [
3 months ago
"# for every site we have to store 3 Greens function (and the associated _tmp-s) in the 3 reference directions\n",
"for i, mag_ent in enumerate(magnetic_entities):\n",
" parsed = parse_magnetic_entity(dh, **mag_ent) # parse orbital indexes\n",
" magnetic_entities[i][\"orbital_indeces\"] = parsed\n",
" # calculate spin box indexes\n",
" magnetic_entities[i][\"spin_box_indeces\"] = blow_up_orbindx(parsed)\n",
" # if orbital is not set use all\n",
" if \"l\" not in mag_ent.keys():\n",
" mag_ent[\"l\"] = \"all\"\n",
" if isinstance(mag_ent[\"atom\"], int):\n",
" mag_ent[\"tags\"] = [\n",
" f\"[{mag_ent['atom']}]{dh.atoms[mag_ent['atom']].tag}({mag_ent['l']})\"\n",
" ]\n",
" mag_ent[\"xyz\"] = [dh.xyz[mag_ent[\"atom\"]]]\n",
" if isinstance(mag_ent[\"atom\"], list):\n",
" mag_ent[\"tags\"] = []\n",
" mag_ent[\"xyz\"] = []\n",
" # iterate over atoms\n",
" for atom_idx in mag_ent[\"atom\"]:\n",
" mag_ent[\"tags\"].append(\n",
" f\"[{atom_idx}]{dh.atoms[atom_idx].tag}({mag_ent['l']})\"\n",
" )\n",
" mag_ent[\"xyz\"].append(dh.xyz[atom_idx])\n",
"\n",
" # calculate size for Greens function generation\n",
" spin_box_shape = len(mag_ent[\"spin_box_indeces\"])\n",
"\n",
" mag_ent[\"energies\"] = [] # we will store the second order energy derivations here\n",
"\n",
" mag_ent[\"Gii\"] = [] # Greens function\n",
" mag_ent[\"Gii_tmp\"] = [] # Greens function for parallelization\n",
" # These will be the perturbed potentials from eq. 100\n",
" mag_ent[\"Vu1\"] = [list([]) for _ in range(len(ref_xcf_orientations))]\n",
" mag_ent[\"Vu2\"] = [list([]) for _ in range(len(ref_xcf_orientations))]\n",
3 months ago
" for i in ref_xcf_orientations:\n",
" # Greens functions for every quantization axis\n",
" mag_ent[\"Gii\"].append(\n",
" np.zeros((eset, spin_box_shape, spin_box_shape), dtype=\"complex128\")\n",
" )\n",
" mag_ent[\"Gii_tmp\"].append(\n",
" np.zeros((eset, spin_box_shape, spin_box_shape), dtype=\"complex128\")\n",
" )\n",
"\n",
"# for every site we have to store 2x3 Greens function (and the associated _tmp-s)\n",
"# in the 3 reference directions, because G_ij and G_ji are both needed\n",
3 months ago
"for pair in pairs:\n",
" # calculate size for Greens function generation\n",
" spin_box_shape_i = len(magnetic_entities[pair[\"ai\"]][\"spin_box_indeces\"])\n",
" spin_box_shape_j = len(magnetic_entities[pair[\"aj\"]][\"spin_box_indeces\"])\n",
" pair[\"tags\"] = []\n",
" for mag_ent in [magnetic_entities[pair[\"ai\"]], magnetic_entities[pair[\"aj\"]]]:\n",
" tag = \"\"\n",
" # get atoms of magnetic entity\n",
" atoms_idx = mag_ent[\"atom\"]\n",
" orbitals = mag_ent[\"l\"]\n",
"\n",
" # if magnetic entity contains one atoms\n",
" if isinstance(atoms_idx, int):\n",
" tag += f\"[{atoms_idx}]{dh.atoms[atoms_idx].tag}({orbitals})\"\n",
"\n",
" # if magnetic entity contains more than one atoms\n",
" if isinstance(atoms_idx, list):\n",
" # iterate over atoms\n",
" atom_group = \"{\"\n",
" for atom_idx in atoms_idx:\n",
" atom_group += f\"[{atom_idx}]{dh.atoms[atom_idx].tag}({orbitals})--\"\n",
" # end {} of the atoms in the magnetic entity\n",
" tag += atom_group[:-2] + \"}\"\n",
" pair[\"tags\"].append(tag)\n",
" pair[\"energies\"] = [] # we will store the second order energy derivations here\n",
"\n",
" pair[\"Gij\"] = [] # Greens function\n",
" pair[\"Gji\"] = []\n",
" pair[\"Gij_tmp\"] = [] # Greens function for parallelization\n",
" pair[\"Gji_tmp\"] = []\n",
" for i in ref_xcf_orientations:\n",
" # Greens functions for every quantization axis\n",
" pair[\"Gij\"].append(\n",
" np.zeros((eset, spin_box_shape_i, spin_box_shape_j), dtype=\"complex128\")\n",
" )\n",
" pair[\"Gij_tmp\"].append(\n",
" np.zeros((eset, spin_box_shape_i, spin_box_shape_j), dtype=\"complex128\")\n",
" )\n",
" pair[\"Gji\"].append(\n",
" np.zeros((eset, spin_box_shape_j, spin_box_shape_i), dtype=\"complex128\")\n",
" )\n",
" pair[\"Gji_tmp\"].append(\n",
" np.zeros((eset, spin_box_shape_j, spin_box_shape_i), dtype=\"complex128\")\n",
" )\n",
"\n",
"if rank == root_node:\n",
" times[\"site_and_pair_dictionaries_time\"] = timer()\n",
" print(\n",
" f\"Site and pair dictionaries created. Elapsed time: {times['site_and_pair_dictionaries_time']} s\"\n",
" )\n",
" print(\n",
" \"================================================================================================================================================================\"\n",
" )"
3 months ago
]
},
{
"cell_type": "code",
"execution_count": null,
3 months ago
"metadata": {},
"outputs": [],
3 months ago
"source": [
"kset = make_kset(dirs=kdirs, NUMK=kset) # generate k space sampling\n",
"wkset = np.ones(len(kset)) / len(kset) # generate weights for k points\n",
"kpcs = np.array_split(kset, size) # split the k points based on MPI size\n",
"kpcs[root_node] = tqdm(kpcs[root_node], desc=\"k loop\")\n",
"\n",
"if rank == root_node:\n",
" times[\"k_set_time\"] = timer()\n",
" print(f\"k set created. Elapsed time: {times['k_set_time']} s\")\n",
" print(\n",
" \"================================================================================================================================================================\"\n",
" )"
3 months ago
]
},
{
"cell_type": "code",
"execution_count": null,
3 months ago
"metadata": {},
"outputs": [],
"source": [
"# this will contain the three hamiltonians in the reference directions needed to calculate the energy variations upon rotation\n",
3 months ago
"hamiltonians = []\n",
3 months ago
"\n",
3 months ago
"# iterate over the reference directions (quantization axes)\n",
"for i, orient in enumerate(ref_xcf_orientations):\n",
" # obtain rotated exchange field\n",
" R = RotMa2b(scf_xcf_orientation, orient[\"o\"])\n",
" rot_XCF = np.einsum(\"ij,jklm->iklm\", R, XCF)\n",
" rot_H_XCF = sum(\n",
" [np.kron(rot_XCF[i], tau) for i, tau in enumerate([tau_x, tau_y, tau_z])]\n",
" )\n",
3 months ago
" rot_H_XCF_uc = rot_H_XCF[uc_in_sc_idx]\n",
"\n",
3 months ago
" # obtain total Hamiltonian with the rotated exchange field\n",
" rot_H = (\n",
" hTRS + rot_H_XCF\n",
" ) # equation 76 #######################################################################################\n",
3 months ago
"\n",
" hamiltonians.append(\n",
" dict(orient=orient[\"o\"], H=rot_H)\n",
" ) # store orientation and rotated Hamiltonian\n",
"\n",
" # these are the rotations (for now) perpendicular to the quantization axis\n",
" for u in orient[\"vw\"]:\n",
" Tu = np.kron(np.eye(NO, dtype=int), tau_u(u)) # section 2.H\n",
3 months ago
"\n",
" Vu1 = 1j / 2 * commutator(rot_H_XCF_uc, Tu) # equation 100\n",
" Vu2 = 1 / 8 * commutator(commutator(Tu, rot_H_XCF_uc), Tu) # equation 100\n",
3 months ago
"\n",
3 months ago
" for mag_ent in magnetic_entities:\n",
" # fill up the perturbed potentials (for now) based on the on-site projections\n",
" mag_ent[\"Vu1\"][i].append(\n",
" Vu1[:, mag_ent[\"spin_box_indeces\"]][mag_ent[\"spin_box_indeces\"], :]\n",
" )\n",
" mag_ent[\"Vu2\"][i].append(\n",
" Vu2[:, mag_ent[\"spin_box_indeces\"]][mag_ent[\"spin_box_indeces\"], :]\n",
" )\n",
"\n",
"if rank == root_node:\n",
" times[\"reference_rotations_time\"] = timer()\n",
" print(\n",
" f\"Rotations done perpendicular to quantization axis. Elapsed time: {times['reference_rotations_time']} s\"\n",
" )\n",
" print(\n",
" \"================================================================================================================================================================\"\n",
" )"
3 months ago
]
},
{
"cell_type": "code",
"execution_count": null,
3 months ago
"metadata": {},
"outputs": [],
3 months ago
"source": [
3 months ago
"if rank == root_node:\n",
" print(\"Starting matrix inversions\")\n",
" print(f\"Total number of k points: {kset.shape[0]}\")\n",
" print(f\"Number of energy samples per k point: {eset}\")\n",
" print(f\"Total number of directions: {len(hamiltonians)}\")\n",
" print(\n",
" f\"Total number of matrix inversions: {kset.shape[0] * len(hamiltonians) * eset}\"\n",
" )\n",
" print(f\"The shape of the Hamiltonian and the Greens function is {NO}x{NO}={NO*NO}\")\n",
" # https://stackoverflow.com/questions/70746660/how-to-predict-memory-requirement-for-np-linalg-inv\n",
" # memory is O(64 n**2) for complex matrices\n",
" memory_size = getsizeof(hamiltonians[0][\"H\"].base) / 1024\n",
" print(\n",
" f\"Memory taken by a single Hamiltonian is: {getsizeof(hamiltonians[0]['H'].base) / 1024} KB\"\n",
" )\n",
" print(f\"Expected memory usage per matrix inversion: {memory_size * 32} KB\")\n",
" print(\n",
" f\"Expected memory usage per k point for parallel inversion: {memory_size * len(hamiltonians) * eset * 32} KB\"\n",
" )\n",
" print(\n",
" f\"Expected memory usage on root node: {len(np.array_split(kset, size)[0]) * memory_size * len(hamiltonians) * eset * 32 / 1024} MB\"\n",
" )\n",
" print(\n",
" \"================================================================================================================================================================\"\n",
" )\n",
"\n",
3 months ago
"comm.Barrier()\n",
"# ----------------------------------------------------------------------\n",
3 months ago
"\n",
"# make energy contour\n",
3 months ago
"# we are working in eV now !\n",
"# and sisil shifts E_F to 0 !\n",
"cont = make_contour(emin=ebot, enum=eset, p=esetp)\n",
3 months ago
"eran = cont.ze\n",
"\n",
"# ----------------------------------------------------------------------\n",
3 months ago
"# sampling the integrand on the contour and the BZ\n",
"for k in kpcs[rank]:\n",
" wk = wkset[rank] # weight of k point in BZ integral\n",
" # iterate over reference directions\n",
" for i, hamiltonian_orientation in enumerate(hamiltonians):\n",
" # calculate Greens function\n",
3 months ago
" H = hamiltonian_orientation[\"H\"]\n",
" HK, SK = hsk(H, ss, dh.sc_off, k)\n",
" # Gk = inv(SK * eran.reshape(eset, 1, 1) - HK)\n",
"\n",
" # solve Greens function sequentially for the energies, because of memory bound\n",
" Gk = np.zeros(shape=(eset, HK.shape[0], HK.shape[1]), dtype=\"complex128\")\n",
" for j in range(eset):\n",
" Gk[j] = inv(SK * eran[j] - HK)\n",
"\n",
3 months ago
" # store the Greens function slice of the magnetic entities (for now) based on the on-site projections\n",
" for mag_ent in magnetic_entities:\n",
" mag_ent[\"Gii_tmp\"][i] += (\n",
" Gk[:, mag_ent[\"spin_box_indeces\"]][..., mag_ent[\"spin_box_indeces\"]]\n",
" * wk\n",
" )\n",
3 months ago
"\n",
" for pair in pairs:\n",
" # add phase shift based on the cell difference\n",
" phase = np.exp(1j * 2 * np.pi * k @ pair[\"Ruc\"].T)\n",
"\n",
3 months ago
" # get the pair orbital sizes from the magnetic entities\n",
" ai = magnetic_entities[pair[\"ai\"]][\"spin_box_indeces\"]\n",
" aj = magnetic_entities[pair[\"aj\"]][\"spin_box_indeces\"]\n",
"\n",
" # store the Greens function slice of the magnetic entities (for now) based on the on-site projections\n",
" pair[\"Gij_tmp\"][i] += Gk[:, ai][..., aj] * phase * wk\n",
" pair[\"Gji_tmp\"][i] += Gk[:, aj][..., ai] * phase * wk\n",
3 months ago
"\n",
"# summ reduce partial results of mpi nodes\n",
"for i in range(len(hamiltonians)):\n",
" for mag_ent in magnetic_entities:\n",
" comm.Reduce(mag_ent[\"Gii_tmp\"][i], mag_ent[\"Gii\"][i], root=root_node)\n",
3 months ago
"\n",
3 months ago
" for pair in pairs:\n",
" comm.Reduce(pair[\"Gij_tmp\"][i], pair[\"Gij\"][i], root=root_node)\n",
" comm.Reduce(pair[\"Gji_tmp\"][i], pair[\"Gji\"][i], root=root_node)\n",
"\n",
"if rank == root_node:\n",
" times[\"green_function_inversion_time\"] = timer()\n",
" print(\n",
" f\"Calculated Greens functions. Elapsed time: {times['green_function_inversion_time']} s\"\n",
" )\n",
" print(\n",
" \"================================================================================================================================================================\"\n",
" )"
3 months ago
]
},
{
"cell_type": "code",
"execution_count": null,
3 months ago
"metadata": {},
"outputs": [],
3 months ago
"source": [
"if rank == root_node:\n",
" # iterate over the magnetic entities\n",
" for tracker, mag_ent in enumerate(magnetic_entities):\n",
" # iterate over the quantization axes\n",
" for i, Gii in enumerate(mag_ent[\"Gii\"]):\n",
" storage = []\n",
" # iterate over the first and second order local perturbations\n",
" for Vu1, Vu2 in zip(mag_ent[\"Vu1\"][i], mag_ent[\"Vu2\"][i]):\n",
3 months ago
" # The Szunyogh-Lichtenstein formula\n",
" traced = np.trace((Vu2 @ Gii + 0.5 * Gii @ Vu1 @ Gii), axis1=1, axis2=2)\n",
3 months ago
" # evaluation of the contour integral\n",
" storage.append(np.trapz(-1 / np.pi * np.imag(traced * cont.we)))\n",
"\n",
" # fill up the magnetic entities dictionary with the energies\n",
" magnetic_entities[tracker][\"energies\"].append(storage)\n",
"\n",
" print(\"Magnetic entities integrated.\")\n",
"\n",
" # iterate over the pairs\n",
" for tracker, pair in enumerate(pairs):\n",
" # iterate over the quantization axes\n",
" for i, (Gij, Gji) in enumerate(zip(pair[\"Gij\"], pair[\"Gji\"])):\n",
" site_i = magnetic_entities[pair[\"ai\"]]\n",
" site_j = magnetic_entities[pair[\"aj\"]]\n",
"\n",
" storage = []\n",
" # iterate over the first order local perturbations in all possible orientations for the two sites\n",
" for Vui in site_i[\"Vu1\"][i]:\n",
" for Vuj in site_j[\"Vu1\"][i]:\n",
" # The Szunyogh-Lichtenstein formula\n",
" traced = np.trace((Vui @ Gij @ Vuj @ Gji), axis1=1, axis2=2)\n",
" # evaluation of the contour integral\n",
" storage.append(np.trapz(-1 / np.pi * np.imag(traced * cont.we)))\n",
" # fill up the pairs dictionary with the energies\n",
" pairs[tracker][\"energies\"].append(storage)\n",
"\n",
" print(\"Pairs integrated.\")\n",
"\n",
" # calculate magnetic parameters\n",
" for pair in pairs:\n",
" J_iso, J_S, D = calculate_exchange_tensor(pair)\n",
" pair[\"J_iso\"] = J_iso * sisl.unit_convert(\"eV\", \"meV\")\n",
" pair[\"J_S\"] = J_S * sisl.unit_convert(\"eV\", \"meV\")\n",
" pair[\"D\"] = D * sisl.unit_convert(\"eV\", \"meV\")\n",
"\n",
" print(\"Magnetic parameters calculated.\")\n",
"\n",
" times[\"end_time\"] = timer()\n",
" print(\n",
" \"##################################################################### GROGU OUTPUT #############################################################################\"\n",
" )\n",
"\n",
" print_parameters(simulation_parameters)\n",
" print_atoms_and_pairs(magnetic_entities, pairs)\n",
" print_runtime_information(times)\n",
"\n",
" # remove clutter from magnetic entities and pair information\n",
" for pair in pairs:\n",
" del pair[\"Gij\"]\n",
" del pair[\"Gij_tmp\"]\n",
" del pair[\"Gji\"]\n",
" del pair[\"Gji_tmp\"]\n",
" for mag_ent in magnetic_entities:\n",
" del mag_ent[\"Gii\"]\n",
" del mag_ent[\"Gii_tmp\"]\n",
" del mag_ent[\"Vu1\"]\n",
" del mag_ent[\"Vu2\"]\n",
" # create output dictionary with all the relevant data\n",
" results = dict(\n",
" parameters=simulation_parameters,\n",
" magnetic_entities=magnetic_entities,\n",
" pairs=pairs,\n",
" runtime=times,\n",
" )\n",
" # save dictionary\n",
" with open(outfile, \"wb\") as output_file:\n",
" pickle.dump(results, output_file)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"##################################################################### GROGU OUTPUT #############################################################################\n",
"================================================================================================================================================================\n",
"Input file: \n",
"Not yet specified.\n",
"Output file: \n",
"test.pickle\n",
"Number of nodes in the parallel cluster: 1\n",
"================================================================================================================================================================\n",
"Cell [Ang]: \n",
"[[ 3.79100000e+00 0.00000000e+00 0.00000000e+00]\n",
" [-1.89550000e+00 3.28310231e+00 0.00000000e+00]\n",
" [ 1.25954923e-15 2.18160327e-15 2.05700000e+01]]\n",
"================================================================================================================================================================\n",
"DFT axis: \n",
"[0 0 1]\n",
"Quantization axis and perpendicular rotation directions:\n",
"[1 0 0] --» [array([0, 1, 0]), array([0, 0, 1])]\n",
"[0 1 0] --» [array([1, 0, 0]), array([0, 0, 1])]\n",
"[0 0 1] --» [array([1, 0, 0]), array([0, 1, 0])]\n",
"================================================================================================================================================================\n",
"Parameters for the contour integral:\n",
"Number of k points: 20\n",
"k point directions: xy\n",
"Ebot: -15\n",
"Eset: 100\n",
"Esetp: 1000\n",
"================================================================================================================================================================\n",
"Atomic information: \n",
"----------------------------------------------------------------------------------------------------------------------------------------------------------------\n",
"[atom index]Element(orbitals) x [Ang] y [Ang] z [Ang] Sx Sy Sz Q Lx Ly Lz Jx Jy Jz\n",
"----------------------------------------------------------------------------------------------------------------------------------------------------------------\n",
"[3]Fe(2) -7.339158738013707e-06 4.149278510690423e-06 11.657585837928032\n",
"\n",
"[4]Fe(2) -7.326987662162937e-06 4.158274523275774e-06 8.912422537596708\n",
"\n",
"[5]Fe(2) 1.8954667088117545 1.0943913231921656 10.285002698393109\n",
"\n",
"================================================================================================================================================================\n",
"Exchange [meV]\n",
"----------------------------------------------------------------------------------------------------------------------------------------------------------------\n",
"Magnetic entity1 Magnetic entity2 [i j k] d [Ang]\n",
"----------------------------------------------------------------------------------------------------------------------------------------------------------------\n",
"[3]Fe(2) [4]Fe(2) [0 0 0] d [Ang] Not yet.\n",
"Isotropic: -63.51146633376187\n",
"DMI: [-9.32966002e-01 -8.89800564e-04 -2.02862680e-06]\n",
"Symmetric-anisotropy: [-3.33721683e+00 1.29672703e+00 6.03687008e-04 -8.09695186e-04\n",
" -6.00702131e-06]\n",
"Energies for debugging: \n",
"array([[-6.22147393e-02, -9.32959995e-04, 9.32972009e-04,\n",
" -6.14709765e-02],\n",
" [-6.75755955e-02, 8.09695186e-07, -9.69905943e-07,\n",
" -6.68486832e-02],\n",
" [-5.36624493e-02, -6.05715634e-07, -6.01658381e-07,\n",
" -5.36632256e-02]])\n",
"J_ii for debugging: (check if this is the same as in calculate_exchange_tensor)\n",
"array([-0.06684868, -0.05366245, -0.06221474])\n",
"Test J_xx = E(y,z) = E(z,y)\n",
"-0.06684868316242108 -0.053663225627735525\n",
"\n",
"[4]Fe(2) [5]Fe(2) [0 0 0] d [Ang] Not yet.\n",
"Isotropic: -60.97776480541008\n",
"DMI: [-3.79946502e+00 6.15248803e+00 3.52644581e-03]\n",
"Symmetric-anisotropy: [0.09164177 0.11139034 0.07107136 6.24190815 0.03636875]\n",
"Energies for debugging: \n",
"array([[-6.08663745e-02, -3.83583377e-03, 3.76309627e-03,\n",
" -6.11807969e-02],\n",
" [-6.06347990e-02, -6.24190815e-03, 6.06306790e-03,\n",
" -6.08861230e-02],\n",
" [-5.98977554e-02, -6.75449092e-05, -7.45978008e-05,\n",
" -5.98154343e-02]])\n",
"J_ii for debugging: (check if this is the same as in calculate_exchange_tensor)\n",
"array([-0.06088612, -0.05989776, -0.06086637])\n",
"Test J_xx = E(y,z) = E(z,y)\n",
"-0.060886123032493376 -0.05981543426889457\n",
"\n",
"[3]Fe(2) [5]Fe(2) [0 0 0] d [Ang] Not yet.\n",
"Isotropic: -60.9832595805832\n",
"DMI: [ 3.78505688e+00 -6.13845903e+00 3.52688440e-03]\n",
"Symmetric-anisotropy: [ 0.08120798 0.11261323 0.07107254 -6.23157554 -0.04249828]\n",
"Energies for debugging: \n",
"array([[-6.08706463e-02, 3.82755516e-03, -3.74255860e-03,\n",
" -6.11770808e-02],\n",
" [-6.06458648e-02, 6.23157554e-03, -6.04534251e-03,\n",
" -6.09020516e-02],\n",
" [-5.98977110e-02, -6.75456589e-05, -7.45994277e-05,\n",
" -5.98153841e-02]])\n",
"J_ii for debugging: (check if this is the same as in calculate_exchange_tensor)\n",
"array([-0.06090205, -0.05989771, -0.06087065])\n",
"Test J_xx = E(y,z) = E(z,y)\n",
"-0.060902051599344476 -0.05981538413498572\n",
"\n",
"================================================================================================================================================================\n",
"Runtime information: \n",
"Total runtime: 203.083672208 s\n",
"----------------------------------------------------------------------------------------------------------------------------------------------------------------\n",
"Initial setup: 0.1483790410000001 s\n",
"Hamiltonian conversion and XC field extraction: 0.861 s\n",
"Pair and site datastructure creatrions: 0.017 s\n",
"k set cration and distribution: 0.022 s\n",
"Rotating XC potential: 0.247 s\n",
"Greens function inversion: 201.715 s\n",
"Calculate energies and magnetic components: 0.073 s"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"========================================\n",
" \n",
"Atom Angstrom\n",
"# Label, x y z Sx Sy Sz #Q Lx Ly Lz Jx Jy Jz\n",
"--------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n",
"Te1 1.8955 1.0943 13.1698 -0.0000 0.0000 -0.1543 # 5.9345 -0.0000 0.0000 -0.0537 -0.0000 0.0000 -0.2080 \n",
"Te2 1.8955 1.0943 7.4002 0.0000 -0.0000 -0.1543 # 5.9345 0.0000 -0.0000 -0.0537 0.0000 -0.0000 -0.2080 \n",
"Ge3 -0.0000 2.1887 10.2850 0.0000 0.0000 -0.1605 # 3.1927 -0.0000 0.0000 0.0012 0.0000 0.0000 -0.1593 \n",
"Fe4 -0.0000 0.0000 11.6576 0.0001 -0.0001 2.0466 # 8.3044 0.0000 -0.0000 0.1606 0.0001 -0.0001 2.2072 \n",
"Fe5 -0.0000 0.0000 8.9124 -0.0001 0.0001 2.0466 # 8.3044 -0.0000 0.0000 0.1606 -0.0001 0.0001 2.2072 \n",
"Fe6 1.8955 1.0944 10.2850 0.0000 0.0000 1.5824 # 8.3296 -0.0000 -0.0000 0.0520 -0.0000 0.0000 1.6344 \n",
"==================================================================================================================================\n",
" \n",
"Exchange meV\n",
"--------------------------------------------------------------------------------\n",
"# at1 at2 i j k # d (Ang)\n",
"--------------------------------------------------------------------------------\n",
"Fe4 Fe5 0 0 0 # 2.7452\n",
"Isotropic -82.0854\n",
"DMI 0.12557 -0.00082199 6.9668e-08\n",
"Symmetric-anisotropy -0.60237 -0.83842 -0.00032278 -1.2166e-05 -3.3923e-05\n",
"--------------------------------------------------------------------------------\n",
"Fe4 Fe6 0 0 0 # 2.5835\n",
"Isotropic -41.9627\n",
"DMI 1.1205 -1.9532 0.0018386\n",
"Symmetric-anisotropy 0.26007 -0.00013243 0.12977 -0.069979 -0.042066\n",
"--------------------------------------------------------------------------------\n"
]
3 months ago
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
3 months ago
}
},
"nbformat": 4,
"nbformat_minor": 2
}