You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
grogu/local_operator.ipynb

228 lines
8.4 KiB

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$\\displaystyle \\operatorname{tr}\\left(\\left(0.5 \\left(AA G_{AA} + 0.5 AB G_{BA} + 0.5 AR G_{RA}\\right) AB + \\left(AA G_{AB} + 0.5 AB G_{BB} + 0.5 AR G_{RB}\\right) BB + 0.5 \\left(AA G_{AR} + 0.5 AB G_{BR} + 0.5 AR G_{RR}\\right) RB\\right) G_{BA} \\right) + \\operatorname{tr}\\left(\\left(0.25 BA G_{AA} AB + 0.5 BA G_{AB} BB + 0.25 BA G_{AR} RB\\right) G_{BB} \\right) + \\operatorname{tr}\\left(\\left(0.25 RA G_{AA} AB + 0.5 RA G_{AB} BB + 0.25 RA G_{AR} RB\\right) G_{BR} \\right) + 0.5 \\operatorname{tr}\\left(\\left(AA G_{AB} + 0.5 AB G_{BB} + 0.5 AR G_{RB}\\right) BA G_{AA} \\right) + 0.5 \\operatorname{tr}\\left(\\left(AA G_{AB} + 0.5 AB G_{BB} + 0.5 AR G_{RB}\\right) BR G_{RA} \\right) + 0.25 \\operatorname{tr}\\left(BA G_{AB} BA G_{AB} \\right) + 0.25 \\operatorname{tr}\\left(BA G_{AB} BR G_{RB} \\right) + 0.25 \\operatorname{tr}\\left(RA G_{AB} BA G_{AR} \\right) + 0.25 \\operatorname{tr}\\left(RA G_{AB} BR G_{RR} \\right)$"
],
"text/plain": [
"Trace((0.5*(AA*G_AA + 0.5*AB*G_BA + 0.5*AR*G_RA)*AB + (AA*G_AB + 0.5*AB*G_BB + 0.5*AR*G_RB)*BB + 0.5*(AA*G_AR + 0.5*AB*G_BR + 0.5*AR*G_RR)*RB)*G_BA) + Trace((0.25*BA*G_AA*AB + 0.5*BA*G_AB*BB + 0.25*BA*G_AR*RB)*G_BB) + Trace((0.25*RA*G_AA*AB + 0.5*RA*G_AB*BB + 0.25*RA*G_AR*RB)*G_BR) + 0.5*Trace((AA*G_AB + 0.5*AB*G_BB + 0.5*AR*G_RB)*BA*G_AA) + 0.5*Trace((AA*G_AB + 0.5*AB*G_BB + 0.5*AR*G_RB)*BR*G_RA) + 0.25*Trace(BA*G_AB*BA*G_AB) + 0.25*Trace(BA*G_AB*BR*G_RB) + 0.25*Trace(RA*G_AB*BA*G_AR) + 0.25*Trace(RA*G_AB*BR*G_RR)"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sympy import MatrixSymbol, BlockMatrix, ZeroMatrix, trace, block_collapse\n",
"\n",
"# Define MatrixSymbols with specific sizes\n",
"# A = 2x2, B = 3x3, R = 4x4\n",
"AA = MatrixSymbol(\"AA\", 2, 2) # 2x2\n",
"AB = MatrixSymbol(\"AB\", 2, 3) # 2x3\n",
"BA = MatrixSymbol(\"BA\", 3, 2) # 3x2\n",
"AR = MatrixSymbol(\"AR\", 2, 4) # 2x4\n",
"RA = MatrixSymbol(\"RA\", 4, 2) # 4x2\n",
"BB = MatrixSymbol(\"BB\", 3, 3) # 3x3\n",
"BR = MatrixSymbol(\"BR\", 3, 4) # 3x4\n",
"RB = MatrixSymbol(\"RB\", 4, 3) # 4x3\n",
"RR = MatrixSymbol(\"RR\", 4, 4) # 4x4\n",
"\n",
"# Create block matrices VA and VB using BlockMatrix\n",
"# We need to use ZeroMatrix with appropriate dimensions for padding\n",
"VA = BlockMatrix(\n",
" [\n",
" [AA, 0.5 * AB, 0.5 * AR],\n",
" [0.5 * BA, ZeroMatrix(3, 3), ZeroMatrix(3, 4)],\n",
" [0.5 * RA, ZeroMatrix(4, 3), ZeroMatrix(4, 4)],\n",
" ]\n",
")\n",
"\n",
"VB = BlockMatrix(\n",
" [\n",
" [ZeroMatrix(2, 2), 0.5 * AB, ZeroMatrix(2, 4)],\n",
" [0.5 * BA, BB, 0.5 * BR],\n",
" [ZeroMatrix(4, 2), 0.5 * RB, ZeroMatrix(4, 4)],\n",
" ]\n",
")\n",
"\n",
"# Define G matrix symbols with matching dimensions\n",
"G_AA = MatrixSymbol(\"G_AA\", 2, 2)\n",
"G_AB = MatrixSymbol(\"G_AB\", 2, 3)\n",
"G_BA = MatrixSymbol(\"G_BA\", 3, 2)\n",
"G_AR = MatrixSymbol(\"G_AR\", 2, 4)\n",
"G_RA = MatrixSymbol(\"G_RA\", 4, 2)\n",
"G_BB = MatrixSymbol(\"G_BB\", 3, 3)\n",
"G_BR = MatrixSymbol(\"G_BR\", 3, 4)\n",
"G_RB = MatrixSymbol(\"G_RB\", 4, 3)\n",
"G_RR = MatrixSymbol(\"G_RR\", 4, 4)\n",
"\n",
"# Create G matrix as a BlockMatrix\n",
"G = BlockMatrix([[G_AA, G_AB, G_AR], [G_BA, G_BB, G_BR], [G_RA, G_RB, G_RR]])\n",
"\n",
"\n",
"# Calculate the trace of VA@G@VB@G\n",
"# First, let's calculate the product step by step\n",
"product = block_collapse(VA @ G @ VB @ G)\n",
"\n",
"# Calculate the trace\n",
"result = trace(product)\n",
"result"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Trace((0.5*(AA*G_AA + 0.5*AB*G_BA)*AB + (AA*G_AB + 0.5*AB*G_BB)*BB)*G_BA) + Trace((0.25*BA*G_AA*AB + 0.5*BA*G_AB*BB)*G_BB) + 0.5*Trace((AA*G_AB + 0.5*AB*G_BB)*BA*G_AA) + 0.25*Trace(BA*G_AB*BA*G_AB)\n"
]
}
],
"source": [
"# Define MatrixSymbols with specific sizes\n",
"AA = MatrixSymbol(\"AA\", 2, 2) # 2x2\n",
"AB = MatrixSymbol(\"AB\", 2, 3) # 2x3\n",
"BA = MatrixSymbol(\"BA\", 3, 2) # 3x2\n",
"BB = MatrixSymbol(\"BB\", 3, 3) # 3x3\n",
"\n",
"# Create block matrices VA and VB using BlockMatrix\n",
"# R-related terms are replaced with zero matrices\n",
"VA = BlockMatrix(\n",
" [\n",
" [AA, 0.5 * AB, ZeroMatrix(2, 4)],\n",
" [0.5 * BA, ZeroMatrix(3, 3), ZeroMatrix(3, 4)],\n",
" [ZeroMatrix(4, 2), ZeroMatrix(4, 3), ZeroMatrix(4, 4)],\n",
" ]\n",
")\n",
"\n",
"VB = BlockMatrix(\n",
" [\n",
" [ZeroMatrix(2, 2), 0.5 * AB, ZeroMatrix(2, 4)],\n",
" [0.5 * BA, BB, ZeroMatrix(3, 4)],\n",
" [ZeroMatrix(4, 2), ZeroMatrix(4, 3), ZeroMatrix(4, 4)],\n",
" ]\n",
")\n",
"\n",
"# Define G matrix symbols with matching dimensions (kept original)\n",
"G_AA = MatrixSymbol(\"G_AA\", 2, 2)\n",
"G_AB = MatrixSymbol(\"G_AB\", 2, 3)\n",
"G_BA = MatrixSymbol(\"G_BA\", 3, 2)\n",
"G_AR = MatrixSymbol(\"G_AR\", 2, 4)\n",
"G_RA = MatrixSymbol(\"G_RA\", 4, 2)\n",
"G_BB = MatrixSymbol(\"G_BB\", 3, 3)\n",
"G_BR = MatrixSymbol(\"G_BR\", 3, 4)\n",
"G_RB = MatrixSymbol(\"G_RB\", 4, 3)\n",
"G_RR = MatrixSymbol(\"G_RR\", 4, 4)\n",
"\n",
"# Create G matrix as a BlockMatrix (kept original)\n",
"G = BlockMatrix([[G_AA, G_AB, G_AR], [G_BA, G_BB, G_BR], [G_RA, G_RB, G_RR]])\n",
"\n",
"# Calculate the product and trace\n",
"product = block_collapse(VA @ G @ VB @ G)\n",
"result = trace(product)\n",
"print(result)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Trace(AA*G_AB*BB*G_BA)\n"
]
}
],
"source": [
"from sympy import MatrixSymbol, BlockMatrix, ZeroMatrix, trace, block_collapse\n",
"\n",
"# Define MatrixSymbols with specific sizes\n",
"AA = MatrixSymbol(\"AA\", 2, 2) # 2x2\n",
"BB = MatrixSymbol(\"BB\", 3, 3) # 3x3\n",
"\n",
"# Create block matrices VA and VB using BlockMatrix with only AA and BB\n",
"VA = BlockMatrix(\n",
" [\n",
" [AA, ZeroMatrix(2, 3), ZeroMatrix(2, 4)],\n",
" [ZeroMatrix(3, 2), ZeroMatrix(3, 3), ZeroMatrix(3, 4)],\n",
" [ZeroMatrix(4, 2), ZeroMatrix(4, 3), ZeroMatrix(4, 4)],\n",
" ]\n",
")\n",
"\n",
"VB = BlockMatrix(\n",
" [\n",
" [ZeroMatrix(2, 2), ZeroMatrix(2, 3), ZeroMatrix(2, 4)],\n",
" [ZeroMatrix(3, 2), BB, ZeroMatrix(3, 4)],\n",
" [ZeroMatrix(4, 2), ZeroMatrix(4, 3), ZeroMatrix(4, 4)],\n",
" ]\n",
")\n",
"\n",
"# Define G matrix symbols with matching dimensions\n",
"G_AA = MatrixSymbol(\"G_AA\", 2, 2)\n",
"G_AB = MatrixSymbol(\"G_AB\", 2, 3)\n",
"G_BA = MatrixSymbol(\"G_BA\", 3, 2)\n",
"G_AR = MatrixSymbol(\"G_AR\", 2, 4)\n",
"G_RA = MatrixSymbol(\"G_RA\", 4, 2)\n",
"G_BB = MatrixSymbol(\"G_BB\", 3, 3)\n",
"G_BR = MatrixSymbol(\"G_BR\", 3, 4)\n",
"G_RB = MatrixSymbol(\"G_RB\", 4, 3)\n",
"G_RR = MatrixSymbol(\"G_RR\", 4, 4)\n",
"\n",
"# Create G matrix as a BlockMatrix\n",
"G = BlockMatrix([[G_AA, G_AB, G_AR], [G_BA, G_BB, G_BR], [G_RA, G_RB, G_RR]])\n",
"\n",
"# Calculate the product and simplify\n",
"product = block_collapse(VA @ G @ VB @ G)\n",
"\n",
"# Calculate the trace\n",
"result = trace(product)\n",
"simplified_result = result.simplify()\n",
"\n",
"print(simplified_result)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}