+# Copyright (c) [2024] []
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
+
+import warnings
+from sys import getsizeof
+from timeit import default_timer as timer
+
+# use numpy number of threads one
+try:
+ from threadpoolctl import threadpool_info, threadpool_limits
+
+ user_api = threadpool_info()["user_api"]
+ threadpool_limits(limits=1, user_api=user_api)
+except:
+ print("Warning: threadpoolctl could not make numpy use single thread!")
+
+import numpy as np
+import sisl
+from mpi4py import MPI
+
+try:
+ from tqdm import tqdm
+
+ tqdm_imported = True
+except:
+ print("Please install tqdm for nice progress bar.")
+ tqdm_imported = False
+
+from grogupy import *
+
+
+
+
[docs]
+
def main():
+
# runtime information
+
times = dict()
+
times["start_time"] = timer()
+
+
# input output stuff
+
######################################################################
+
######################################################################
+
######################################################################
+
+
infile = "/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf"
+
outfile = "./Fe3GeTe2_notebook"
+
+
magnetic_entities = [
+
dict(atom=3, l=2),
+
dict(atom=4, l=2),
+
dict(atom=5, l=2),
+
]
+
pairs = [
+
dict(ai=0, aj=1, Ruc=np.array([0, 0, 0])),
+
dict(ai=0, aj=2, Ruc=np.array([0, 0, 0])),
+
dict(ai=1, aj=2, Ruc=np.array([0, 0, 0])),
+
dict(ai=0, aj=2, Ruc=np.array([-1, -1, 0])),
+
dict(ai=1, aj=2, Ruc=np.array([-1, -1, 0])),
+
dict(ai=0, aj=2, Ruc=np.array([-1, 0, 0])),
+
dict(ai=1, aj=2, Ruc=np.array([-1, 0, 0])),
+
dict(ai=1, aj=2, Ruc=np.array([-2, 0, 0])),
+
dict(ai=1, aj=2, Ruc=np.array([-3, 0, 0])),
+
]
+
simulation_parameters = default_args
+
simulation_parameters["infile"] = infile
+
simulation_parameters["outfile"] = outfile
+
simulation_parameters["kset"] = 20
+
simulation_parameters["kdirs"] = "xy"
+
simulation_parameters["eset"] = 600
+
simulation_parameters["esetp"] = 10000
+
+
######################################################################
+
######################################################################
+
######################################################################
+
+
# MPI parameters
+
comm = MPI.COMM_WORLD
+
size = comm.Get_size()
+
rank = comm.Get_rank()
+
root_node = 0
+
+
if rank == root_node:
+
# include parallel size in simulation parameters
+
simulation_parameters["parallel_size"] = size
+
+
# check versions for debugging
+
try:
+
print("sisl version: ", sisl.__version__)
+
except:
+
print("sisl version unknown.")
+
try:
+
print("numpy version: ", np.__version__)
+
except:
+
print("numpy version unknown.")
+
+
# rename outfile
+
if not simulation_parameters["outfile"].endswith(".pickle"):
+
simulation_parameters["outfile"] += ".pickle"
+
+
# if ebot is not given put it 0.1 eV under the smallest energy
+
if simulation_parameters["ebot"] is None:
+
try:
+
eigfile = simulation_parameters["infile"][:-3] + "EIG"
+
simulation_parameters["ebot"] = read_siesta_emin(eigfile) - 0.1
+
simulation_parameters["automatic_ebot"] = True
+
except:
+
print("Could not determine ebot.")
+
print("Parameter was not given and .EIG file was not found.")
+
else:
+
simulation_parameters["automatic_ebot"] = False
+
+
# read sile
+
fdf = sisl.get_sile(simulation_parameters["infile"])
+
+
# read in hamiltonian
+
dh = fdf.read_hamiltonian()
+
+
# read unit cell vectors
+
simulation_parameters["cell"] = fdf.read_geometry().cell
+
+
# unit cell index
+
uc_in_sc_idx = dh.lattice.sc_index([0, 0, 0])
+
+
if rank == root_node:
+
print("\n\n\n\n\n")
+
print(
+
"#################################################################### JOB INFORMATION ###########################################################################"
+
)
+
print_job_description(simulation_parameters)
+
print(
+
"################################################################################################################################################################"
+
)
+
print("\n\n\n\n\n")
+
+
times["setup_time"] = timer()
+
print(f"Setup done. Elapsed time: {times['setup_time']} s")
+
print(
+
"================================================================================================================================================================"
+
)
+
+
NO = dh.no # shorthand for number of orbitals in the unit cell
+
+
# reformat Hamltonian and Overlap matrix for manipulations
+
hh, ss = build_hh_ss(dh)
+
+
# symmetrizing Hamiltonian and Overlap matrix to make them hermitian
+
for i in range(dh.lattice.sc_off.shape[0]):
+
j = dh.lattice.sc_index(-dh.lattice.sc_off[i])
+
h1, h1d = hh[i], hh[j]
+
hh[i], hh[j] = (h1 + h1d.T.conj()) / 2, (h1d + h1.T.conj()) / 2
+
s1, s1d = ss[i], ss[j]
+
ss[i], ss[j] = (s1 + s1d.T.conj()) / 2, (s1d + s1.T.conj()) / 2
+
+
# identifying TRS and TRB parts of the Hamiltonian
+
TAUY = np.kron(np.eye(NO), tau_y)
+
hTR = np.array([TAUY @ hh[i].conj() @ TAUY for i in range(dh.lattice.nsc.prod())])
+
hTRS = (hh + hTR) / 2
+
hTRB = (hh - hTR) / 2
+
+
# extracting the exchange field
+
traced = [spin_tracer(hTRB[i]) for i in range(dh.lattice.nsc.prod())] # equation 77
+
XCF = np.array(
+
[
+
np.array([f["x"] / 2 for f in traced]),
+
np.array([f["y"] / 2 for f in traced]),
+
np.array([f["z"] / 2 for f in traced]),
+
]
+
)
+
+
# check if exchange field has scalar part
+
max_xcfs = abs(np.array(np.array([f["c"] / 2 for f in traced]))).max()
+
if max_xcfs > 1e-12:
+
warnings.warn(
+
f"Exchange field has non negligible scalar part. Largest value is {max_xcfs}"
+
)
+
+
if rank == root_node:
+
times["H_and_XCF_time"] = timer()
+
print(
+
f"Hamiltonian and exchange field rotated. Elapsed time: {times['H_and_XCF_time']} s"
+
)
+
print(
+
"================================================================================================================================================================"
+
)
+
+
# initialize pairs and magnetic entities based on input information
+
pairs, magnetic_entities = setup_pairs_and_magnetic_entities(
+
magnetic_entities, pairs, dh, simulation_parameters
+
)
+
+
if rank == root_node:
+
times["site_and_pair_dictionaries_time"] = timer()
+
print(
+
f"Site and pair dictionaries created. Elapsed time: {times['site_and_pair_dictionaries_time']} s"
+
)
+
print(
+
"================================================================================================================================================================"
+
)
+
+
# generate k space sampling
+
kset = make_kset(
+
dirs=simulation_parameters["kdirs"], NUMK=simulation_parameters["kset"]
+
)
+
+
# generate weights for k points
+
wkset = np.ones(len(kset)) / len(kset)
+
+
# split the k points based on MPI size
+
kpcs = np.array_split(kset, size)
+
+
# use progress bar if available
+
if rank == root_node and tqdm_imported:
+
kpcs[root_node] = tqdm(kpcs[root_node], desc="k loop")
+
+
if rank == root_node:
+
times["k_set_time"] = timer()
+
print(f"k set created. Elapsed time: {times['k_set_time']} s")
+
print(
+
"================================================================================================================================================================"
+
)
+
+
# this will contain the three Hamiltonian in the
+
# reference directions needed to calculate the energy
+
# variations upon rotation
+
hamiltonians = []
+
+
# iterate over the reference directions (quantization axes)
+
for i, orient in enumerate(simulation_parameters["ref_xcf_orientations"]):
+
# obtain rotated exchange field and Hamiltonian
+
R = RotMa2b(simulation_parameters["scf_xcf_orientation"], orient["o"])
+
rot_XCF = np.einsum("ij,jklm->iklm", R, XCF)
+
rot_H_XCF = sum(
+
[np.kron(rot_XCF[i], tau) for i, tau in enumerate([tau_x, tau_y, tau_z])]
+
)
+
rot_H_XCF_uc = rot_H_XCF[uc_in_sc_idx]
+
+
# obtain total Hamiltonian with the rotated exchange field
+
rot_H = hTRS + rot_H_XCF # equation 76
+
+
# store the relevant information of the Hamiltonian
+
hamiltonians.append(dict(orient=orient["o"], H=rot_H))
+
+
# these are the rotations (for now) perpendicular to the quantization axis
+
for u in orient["vw"]:
+
# section 2.H
+
Tu = np.kron(np.eye(NO, dtype=int), tau_u(u))
+
Vu1, Vu2 = calc_Vu(rot_H_XCF_uc, Tu)
+
+
for mag_ent in magnetic_entities:
+
idx = mag_ent["spin_box_indices"]
+
# fill up the perturbed potentials (for now) based on the on-site projections
+
mag_ent["Vu1"][i].append(onsite_projection(Vu1, idx, idx))
+
mag_ent["Vu2"][i].append(onsite_projection(Vu2, idx, idx))
+
+
if rank == root_node:
+
times["reference_rotations_time"] = timer()
+
print(
+
f"Rotations done perpendicular to quantization axis. Elapsed time: {times['reference_rotations_time']} s"
+
)
+
print(
+
"================================================================================================================================================================"
+
)
+
+
# provide helpful information to estimate the runtime and memory
+
# requirements of the Greens function calculations
+
if rank == root_node:
+
print("Starting matrix inversions.")
+
if simulation_parameters["padawan_mode"]:
+
print("Padawan mode: ")
+
print(f"Total number of k points: {kset.shape[0]}")
+
print(
+
f"Number of energy samples per k point: {simulation_parameters['eset']}"
+
)
+
print(f"Total number of directions: {len(hamiltonians)}")
+
print(
+
f"Total number of matrix inversions: {kset.shape[0] * len(hamiltonians) * simulation_parameters['eset']}"
+
)
+
print(
+
f"The shape of the Hamiltonian and the Greens function is {NO}x{NO}={NO*NO}"
+
)
+
# https://stackoverflow.com/questions/70746660/how-to-predict-memory-requirement-for-np-linalg-inv
+
# memory is O(64 n**2) for complex matrices
+
memory_size = getsizeof(hamiltonians[0]["H"].base) / 1024
+
print(
+
f"Memory taken by a single Hamiltonian is: {getsizeof(hamiltonians[0]['H'].base) / 1024} KB"
+
)
+
print(f"Expected memory usage per matrix inversion: {memory_size * 32} KB")
+
print(
+
f"Expected memory usage per k point for parallel inversion: {memory_size * len(hamiltonians) * simulation_parameters['eset'] * 32} KB"
+
)
+
print(
+
f"Expected memory usage on root node: {len(np.array_split(kset, size)[0]) * memory_size * len(hamiltonians) * simulation_parameters['eset'] * 32 / 1024} MB"
+
)
+
print(
+
"================================================================================================================================================================"
+
)
+
+
# MPI barrier
+
comm.Barrier()
+
+
# make energy contour
+
cont = make_contour(
+
emin=simulation_parameters["ebot"],
+
enum=simulation_parameters["eset"],
+
p=simulation_parameters["esetp"],
+
)
+
eran = cont.ze
+
+
# sampling the integrand on the contour and the BZ
+
for k in kpcs[rank]:
+
# weight of k point in BZ integral
+
wk = wkset[rank]
+
+
# iterate over reference directions
+
for i, hamiltonian_orientation in enumerate(hamiltonians):
+
# calculate Hamiltonian and Overlap matrix in a given k point
+
H = hamiltonian_orientation["H"]
+
HK, SK = hsk(H, ss, dh.sc_off, k)
+
+
if simulation_parameters["parallel_solver_for_Gk"]:
+
Gk = parallel_Gk(HK, SK, eran, simulation_parameters["eset"])
+
else:
+
# solve Greens function sequentially for the energies, because of memory bound
+
Gk = sequential_GK(HK, SK, eran, simulation_parameters["eset"])
+
+
# store the Greens function slice of the magnetic entities
+
for mag_ent in magnetic_entities:
+
idx = mag_ent["spin_box_indices"]
+
mag_ent["Gii_tmp"][i] += onsite_projection(Gk, idx, idx) * wk
+
+
for pair in pairs:
+
# add phase shift based on the cell difference
+
phase = np.exp(1j * 2 * np.pi * k @ pair["Ruc"].T)
+
+
# get the pair orbital sizes from the magnetic entities
+
ai = magnetic_entities[pair["ai"]]["spin_box_indices"]
+
aj = magnetic_entities[pair["aj"]]["spin_box_indices"]
+
+
# store the Greens function slice of the magnetic entities
+
pair["Gij_tmp"][i] += onsite_projection(Gk, ai, aj) * phase * wk
+
pair["Gji_tmp"][i] += onsite_projection(Gk, aj, ai) / phase * wk
+
+
# summ reduce partial results of mpi nodes
+
for i in range(len(hamiltonians)):
+
for mag_ent in magnetic_entities:
+
comm.Reduce(mag_ent["Gii_tmp"][i], mag_ent["Gii"][i], root=root_node)
+
+
for pair in pairs:
+
comm.Reduce(pair["Gij_tmp"][i], pair["Gij"][i], root=root_node)
+
comm.Reduce(pair["Gji_tmp"][i], pair["Gji"][i], root=root_node)
+
+
if rank == root_node:
+
times["green_function_inversion_time"] = timer()
+
print(
+
f"Calculated Greens functions. Elapsed time: {times['green_function_inversion_time']} s"
+
)
+
print(
+
"================================================================================================================================================================"
+
)
+
+
if rank == root_node:
+
# iterate over the magnetic entities
+
for tracker, mag_ent in enumerate(magnetic_entities):
+
# iterate over the quantization axes
+
for i, Gii in enumerate(mag_ent["Gii"]):
+
storage = []
+
# iterate over the first and second order local perturbations
+
for Vu1, Vu2 in zip(mag_ent["Vu1"][i], mag_ent["Vu2"][i]):
+
# The Szunyogh-Lichtenstein formula
+
traced = np.trace(
+
(Vu2 @ Gii + 0.5 * Gii @ Vu1 @ Gii), axis1=1, axis2=2
+
) # this is the on site projection
+
# evaluation of the contour integral
+
storage.append(int_de_ke(traced, cont.we))
+
# fill up the magnetic entities dictionary with the energies
+
magnetic_entities[tracker]["energies"].append(storage)
+
# convert to np array
+
magnetic_entities[tracker]["energies"] = np.array(
+
magnetic_entities[tracker]["energies"]
+
)
+
+
# iterate over the pairs
+
for tracker, pair in enumerate(pairs):
+
# iterate over the quantization axes
+
for i, (Gij, Gji) in enumerate(zip(pair["Gij"], pair["Gji"])):
+
site_i = magnetic_entities[pair["ai"]]
+
site_j = magnetic_entities[pair["aj"]]
+
storage = []
+
# iterate over the first order local perturbations in all possible orientations for the two sites
+
for Vui in site_i["Vu1"][i]:
+
for Vuj in site_j["Vu1"][i]:
+
# The Szunyogh-Lichtenstein formula
+
traced = np.trace(
+
(Vui @ Gij @ Vuj @ Gji), axis1=1, axis2=2
+
) # this is the on site projection
+
# evaluation of the contour integral
+
storage.append(int_de_ke(traced, cont.we))
+
# fill up the pairs dictionary with the energies
+
pairs[tracker]["energies"].append(storage)
+
# convert to np array
+
pairs[tracker]["energies"] = np.array(pairs[tracker]["energies"])
+
+
# calculate magnetic parameters
+
for mag_ent in magnetic_entities:
+
Kxx, Kyy, Kzz, consistency = calculate_anisotropy_tensor(mag_ent)
+
mag_ent["K"] = np.array([Kxx, Kyy, Kzz]) * sisl.unit_convert("eV", "meV")
+
mag_ent["K_consistency"] = consistency
+
+
for pair in pairs:
+
J_iso, J_S, D, J = calculate_exchange_tensor(pair)
+
pair["J_iso"] = J_iso * sisl.unit_convert("eV", "meV")
+
pair["J_S"] = J_S * sisl.unit_convert("eV", "meV")
+
pair["D"] = D * sisl.unit_convert("eV", "meV")
+
pair["J"] = J * sisl.unit_convert("eV", "meV")
+
+
times["end_time"] = timer()
+
print("\n\n\n\n\n")
+
print(
+
"##################################################################### GROGU OUTPUT #############################################################################"
+
)
+
+
print_parameters(simulation_parameters)
+
print_atoms_and_pairs(magnetic_entities, pairs)
+
print(
+
"################################################################################################################################################################"
+
)
+
print_runtime_information(times)
+
print("")
+
+
# remove unwanted stuff before saving
+
pairs, magnetic_entities = remove_clutter_for_save(pairs, magnetic_entities)
+
# create output dictionary with all the relevant data
+
results = dict(
+
parameters=simulation_parameters,
+
magnetic_entities=magnetic_entities,
+
pairs=pairs,
+
runtime=times,
+
)
+
+
# save results
+
save_pickle(simulation_parameters["outfile"], results)
+
+
print("\n\n\n\n\n")
+
+
+
+if __name__ == "__main__":
+ main()
+