From 8b05e2db586d2ef09326bda70fbd70488968ca34 Mon Sep 17 00:00:00 2001 From: Daniel Pozsar Date: Fri, 8 Nov 2024 12:06:13 +0100 Subject: [PATCH] restructure code --- src/grogu_magn/core.py | 38 ++++++- src/grogu_magn/io.py | 6 + test.ipynb | 41 +++---- test.py | 243 ++++++++++++++++++++++++++++++++++++++++- 4 files changed, 296 insertions(+), 32 deletions(-) diff --git a/src/grogu_magn/core.py b/src/grogu_magn/core.py index c294e06..8e3ab4e 100644 --- a/src/grogu_magn/core.py +++ b/src/grogu_magn/core.py @@ -142,8 +142,8 @@ def setup_pairs_and_magnetic_entities( # for every site we have to store 3 Greens function (and the associated _tmp-s) in the 3 reference directions for mag_ent in magnetic_entities: parsed = parse_magnetic_entity(dh, **mag_ent) # parse orbital indexes - mag_ent["orbital_indeces"] = parsed - mag_ent["spin_box_indeces"] = blow_up_orbindx( + mag_ent["orbital_indices"] = parsed + mag_ent["spin_box_indices"] = blow_up_orbindx( parsed ) # calculate spin box indexes # if orbital is not set use all @@ -165,7 +165,7 @@ def setup_pairs_and_magnetic_entities( mag_ent["xyz"].append(dh.xyz[atom_idx]) # calculate size for Greens function generation - spin_box_shape = len(mag_ent["spin_box_indeces"]) + spin_box_shape = len(mag_ent["spin_box_indices"]) mag_ent["energies"] = ( [] @@ -205,8 +205,8 @@ def setup_pairs_and_magnetic_entities( pair["dist"] = np.linalg.norm(xyz_ai - xyz_aj) # calculate size for Greens function generation - spin_box_shape_i = len(magnetic_entities[pair["ai"]]["spin_box_indeces"]) - spin_box_shape_j = len(magnetic_entities[pair["aj"]]["spin_box_indeces"]) + spin_box_shape_i = len(magnetic_entities[pair["ai"]]["spin_box_indices"]) + spin_box_shape_j = len(magnetic_entities[pair["aj"]]["spin_box_indices"]) pair["tags"] = [] for mag_ent in [magnetic_entities[pair["ai"]], magnetic_entities[pair["aj"]]]: tag = "" @@ -261,3 +261,31 @@ def setup_pairs_and_magnetic_entities( ) return pairs, magnetic_entities + + +def onsite_projection(matrix, idx1, idx2): + """_summary_ + + Args: + matrix (_type_): _description_ + idx (_type_): _description_ + + Returns: + _type_: _description_ + """ + + return matrix[..., idx1, :][..., idx2] + + +def onsite_projection(matrix, idx): + """_summary_ + + Args: + matrix (_type_): _description_ + idx (_type_): _description_ + + Returns: + _type_: _description_ + """ + + return matrix[..., idx, :][..., idx] diff --git a/src/grogu_magn/io.py b/src/grogu_magn/io.py index f9a5b47..f7c2f19 100644 --- a/src/grogu_magn/io.py +++ b/src/grogu_magn/io.py @@ -17,6 +17,9 @@ default_args = dict( ebot=None, eset=42, esetp=1000, + calculate_charge=True, + charges=[], + parallel_solver_for_Gk=True, ) # parser = ArgumentParser() @@ -101,6 +104,9 @@ def print_parameters(simulation_parameters): print( "================================================================================================================================================================" ) + if simulation_parameters["calculate_charge"]: + print("The calculated charge of the Hamiltonian in the quantization axes: ") + print(simulation_parameters["charges"]) def print_atoms_and_pairs(magnetic_entities, pairs): diff --git a/test.ipynb b/test.ipynb index 65186e2..62819e8 100644 --- a/test.ipynb +++ b/test.ipynb @@ -2,25 +2,16 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, "outputs": [ { - "name": "stderr", + "name": "stdout", "output_type": "stream", "text": [ - "[Daniels-Air:78400] shmem: mmap: an error occurred while determining whether or not /var/folders/yh/dx7xl94n3g52ts3td8qcxjcc0000gn/T//ompi.Daniels-Air.501/jf.0/412614656/sm_segment.Daniels-Air.501.18980000.0 could be created.\n" + "0.14.3\n", + "1.24.4\n" ] - }, - { - "data": { - "text/plain": [ - "'0.14.3'" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ @@ -54,7 +45,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -63,7 +54,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -116,7 +107,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -149,7 +140,7 @@ "Eset: 300\n", "Esetp: 1000\n", "================================================================================================================================================================\n", - "Setup done. Elapsed time: 2.303232 s\n", + "Setup done. Elapsed time: 2435.031293583 s\n", "================================================================================================================================================================\n" ] } @@ -207,14 +198,14 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Hamiltonian and exchange field rotated. Elapsed time: 2.914966208 s\n", + "Hamiltonian and exchange field rotated. Elapsed time: 2435.900105791 s\n", "================================================================================================================================================================\n" ] } @@ -268,14 +259,14 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Site and pair dictionaries created. Elapsed time: 2.944875791 s\n", + "Site and pair dictionaries created. Elapsed time: 2438.737295 s\n", "================================================================================================================================================================\n" ] } @@ -297,7 +288,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -311,7 +302,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "k set created. Elapsed time: 2.974842875 s\n", + "k set created. Elapsed time: 2441.389173 s\n", "================================================================================================================================================================\n" ] } @@ -336,14 +327,14 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 29, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Rotations done perpendicular to quantization axis. Elapsed time: 3.253283416 s\n", + "Rotations done perpendicular to quantization axis. Elapsed time: 2460.81759 s\n", "================================================================================================================================================================\n" ] } diff --git a/test.py b/test.py index 4e5aa93..a83cf79 100644 --- a/test.py +++ b/test.py @@ -178,9 +178,14 @@ if rank == root_node: kset = make_kset( dirs=simulation_parameters["kdirs"], NUMK=simulation_parameters["kset"] ) -wkset = np.ones(len(kset)) / len(kset) # generate weights for k points -kpcs = np.array_split(kset, size) # split the k points based on MPI size +# generate weights for k points +wkset = np.ones(len(kset)) / len(kset) + +# split the k points based on MPI size +kpcs = np.array_split(kset, size) + +# use progress bar if available if tqdm_imported: kpcs[root_node] = tqdm(kpcs[root_node], desc="k loop") @@ -190,3 +195,237 @@ if rank == root_node: print( "================================================================================================================================================================" ) + +# this will contain the three Hamiltonian in the +# reference directions needed to calculate the energy +# variations upon rotation +hamiltonians = [] + +# iterate over the reference directions (quantization axes) +for i, orient in enumerate(simulation_parameters["ref_xcf_orientations"]): + # obtain rotated exchange field and Hamiltonian + R = RotMa2b(simulation_parameters["scf_xcf_orientation"], orient["o"]) + rot_XCF = np.einsum("ij,jklm->iklm", R, XCF) + rot_H_XCF = sum( + [np.kron(rot_XCF[i], tau) for i, tau in enumerate([tau_x, tau_y, tau_z])] + ) + rot_H_XCF_uc = rot_H_XCF[uc_in_sc_idx] + + # obtain total Hamiltonian with the rotated exchange field + rot_H = hTRS + rot_H_XCF # equation 76 + + # store the relevant information of the Hamiltonian + hamiltonians.append(dict(orient=orient["o"], H=rot_H)) + + if simulation_parameters["calculate_charge"]: + hamiltonians[-1]["GS"] = np.zeros( + (simulation_parameters["eset"], rot_H.shape[1], rot_H.shape[2]), + dtype="complex128", + ) + hamiltonians[-1]["GS_tmp"] = np.zeros( + (simulation_parameters["eset"], rot_H.shape[1], rot_H.shape[2]), + dtype="complex128", + ) + + # these are the rotations (for now) perpendicular to the quantization axis + for u in orient["vw"]: + # section 2.H + Tu = np.kron(np.eye(NO, dtype=int), tau_u(u)) + Vu1, Vu2 = calc_Vu(rot_H_XCF_uc, Tu) + + for mag_ent in magnetic_entities: + idx = mag_ent["spin_box_indices"] + # fill up the perturbed potentials (for now) based on the on-site projections + mag_ent["Vu1"][i].append(onsite_projection(Vu1, idx)) + mag_ent["Vu2"][i].append(onsite_projection(Vu2, idx)) + +if rank == root_node: + times["reference_rotations_time"] = timer() + print( + f"Rotations done perpendicular to quantization axis. Elapsed time: {times['reference_rotations_time']} s" + ) + print( + "================================================================================================================================================================" + ) + +# provide helpful information to estimate the runtime and memory +# requirements of the Greens function calculations +if rank == root_node: + print("Starting matrix inversions.") + print(f"Total number of k points: {kset.shape[0]}") + print(f"Number of energy samples per k point: {simulation_parameters['eset']}") + print(f"Total number of directions: {len(hamiltonians)}") + print( + f"Total number of matrix inversions: {kset.shape[0] * len(hamiltonians) * simulation_parameters['eset']}" + ) + print(f"The shape of the Hamiltonian and the Greens function is {NO}x{NO}={NO*NO}") + # https://stackoverflow.com/questions/70746660/how-to-predict-memory-requirement-for-np-linalg-inv + # memory is O(64 n**2) for complex matrices + memory_size = getsizeof(hamiltonians[0]["H"].base) / 1024 + print( + f"Memory taken by a single Hamiltonian is: {getsizeof(hamiltonians[0]['H'].base) / 1024} KB" + ) + print(f"Expected memory usage per matrix inversion: {memory_size * 32} KB") + print( + f"Expected memory usage per k point for parallel inversion: {memory_size * len(hamiltonians) * simulation_parameters['eset'] * 32} KB" + ) + print( + f"Expected memory usage on root node: {len(np.array_split(kset, size)[0]) * memory_size * len(hamiltonians) * simulation_parameters['eset'] * 32 / 1024} MB" + ) + print( + "================================================================================================================================================================" + ) + +# MPI barrier +comm.Barrier() + +# make energy contour +cont = make_contour( + emin=simulation_parameters["ebot"], + enum=simulation_parameters["eset"], + p=simulation_parameters["esetp"], +) +eran = cont.ze + +# sampling the integrand on the contour and the BZ +for k in kpcs[rank]: + # weight of k point in BZ integral + wk = wkset[rank] + + # iterate over reference directions + for i, hamiltonian_orientation in enumerate(hamiltonians): + # calculate Hamiltonian and Overlap matrix in a given k point + H = hamiltonian_orientation["H"] + HK, SK = hsk(H, ss, dh.sc_off, k) + + if simulation_parameters["parallel_solver_for_Gk"]: + Gk = parallel_Gk(HK, SK, eran, simulation_parameters["eset"]) + else: + # solve Greens function sequentially for the energies, because of memory bound + Gk = sequential_GK(HK, SK, eran, simulation_parameters["eset"]) + + # saving this for total charge + if simulation_parameters["calculate_charge"]: + hamiltonian_orientation["GS_tmp"] += Gk @ SK * wk + + # store the Greens function slice of the magnetic entities + for mag_ent in magnetic_entities: + idx = mag_ent["spin_box_indices"] + mag_ent["Gii_tmp"][i] += onsite_projection(Gk, idx) * wk + + for pair in pairs: + # add phase shift based on the cell difference + phase = np.exp(1j * 2 * np.pi * k @ pair["Ruc"].T) + + # get the pair orbital sizes from the magnetic entities + ai = magnetic_entities[pair["ai"]]["spin_box_indices"] + aj = magnetic_entities[pair["aj"]]["spin_box_indices"] + + # store the Greens function slice of the magnetic entities + pair["Gij_tmp"][i] += onsite_projection(Gk, ai, aj) * phase * wk + pair["Gji_tmp"][i] += onsite_projection(Gk, aj, ai) / phase * wk + +# summ reduce partial results of mpi nodes +for i in range(len(hamiltonians)): + # for total charge calculation + if simulation_parameters["calculate_charge"]: + comm.Reduce(hamiltonians[i]["GS_tmp"], hamiltonians[i]["GS"], root=root_node) + + for mag_ent in magnetic_entities: + comm.Reduce(mag_ent["Gii_tmp"][i], mag_ent["Gii"][i], root=root_node) + + for pair in pairs: + comm.Reduce(pair["Gij_tmp"][i], pair["Gij"][i], root=root_node) + comm.Reduce(pair["Gji_tmp"][i], pair["Gji"][i], root=root_node) + +if rank == root_node: + times["green_function_inversion_time"] = timer() + print( + f"Calculated Greens functions. Elapsed time: {times['green_function_inversion_time']} s" + ) + print( + "================================================================================================================================================================" + ) + + +if rank == root_node: + # Calculate total charge + if simulation_parameters["calculate_charge"]: + for hamiltonian in hamiltonians: + GS = hamiltonian["GS"] + traced = np.trace((GS), axis1=1, axis2=2) + simulation_parameters["charges"].append(int_de_ke(traced, cont.we)) + + # iterate over the magnetic entities + for tracker, mag_ent in enumerate(magnetic_entities): + # iterate over the quantization axes + for i, Gii in enumerate(mag_ent["Gii"]): + storage = [] + # iterate over the first and second order local perturbations + for Vu1, Vu2 in zip(mag_ent["Vu1"][i], mag_ent["Vu2"][i]): + # The Szunyogh-Lichtenstein formula + traced = np.trace( + (Vu2 @ Gii + 0.5 * Gii @ Vu1 @ Gii), axis1=1, axis2=2 + ) # this is the on site projection + # evaluation of the contour integral + storage.append(int_de_ke(traced, cont.we)) + # fill up the magnetic entities dictionary with the energies + magnetic_entities[tracker]["energies"].append(storage) + # convert to np array + magnetic_entities[tracker]["energies"] = np.array( + magnetic_entities[tracker]["energies"] + ) + + # iterate over the pairs + for tracker, pair in enumerate(pairs): + # iterate over the quantization axes + for i, (Gij, Gji) in enumerate(zip(pair["Gij"], pair["Gji"])): + site_i = magnetic_entities[pair["ai"]] + site_j = magnetic_entities[pair["aj"]] + storage = [] + # iterate over the first order local perturbations in all possible orientations for the two sites + for Vui in site_i["Vu1"][i]: + for Vuj in site_j["Vu1"][i]: + # The Szunyogh-Lichtenstein formula + traced = np.trace( + (Vui @ Gij @ Vuj @ Gji), axis1=1, axis2=2 + ) # this is the on site projection + # evaluation of the contour integral + storage.append(int_de_ke(traced, cont.we)) + # fill up the pairs dictionary with the energies + pairs[tracker]["energies"].append(storage) + # convert to np array + pairs[tracker]["energies"] = np.array(pairs[tracker]["energies"]) + + # calculate magnetic parameters + for mag_ent in magnetic_entities: + Kxx, Kyy, Kzz, consistency = calculate_anisotropy_tensor(mag_ent) + mag_ent["K"] = np.array([Kxx, Kyy, Kzz]) * sisl.unit_convert("eV", "meV") + mag_ent["K_consistency"] = consistency + + for pair in pairs: + J_iso, J_S, D, J = calculate_exchange_tensor(pair) + pair["J_iso"] = J_iso * sisl.unit_convert("eV", "meV") + pair["J_S"] = J_S * sisl.unit_convert("eV", "meV") + pair["D"] = D * sisl.unit_convert("eV", "meV") + pair["J"] = J * sisl.unit_convert("eV", "meV") + + times["end_time"] = timer() + print( + "##################################################################### GROGU OUTPUT #############################################################################" + ) + + print_parameters(simulation_parameters) + print_atoms_and_pairs(magnetic_entities, pairs) + print_runtime_information(times) + + pairs, magnetic_entities = remove_clutter_for_save(pairs, magnetic_entities) + # create output dictionary with all the relevant data + results = dict( + parameters=simulation_parameters, + magnetic_entities=magnetic_entities, + pairs=pairs, + runtime=times, + ) + + save_pickle(simulation_parameters["outfile"], results)