# Copyright (c) [2024] [] # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """Docstring in utilities. """ from typing import Union import numpy as np from scipy.special import roots_legendre from sisl.io.siesta import eigSileSiesta from grogupy.constants import TAU_0, TAU_X, TAU_Y, TAU_Z def commutator(a: np.array, b: np.array) -> np.array: """Shorthand for commutator. Commutator of two matrices in the mathematical sense. Args: a : np.array_like The first matrix b : np.array_like The second matrix Returns: np.array_like The commutator of a and b """ return a @ b - b @ a # define some useful functions def hsk( H: np.array, ss: np.array, sc_off: list, k: tuple = (0, 0, 0) ) -> tuple[np.array, np.array]: """Speed up Hk and Sk generation. Calculates the Hamiltonian and the Overlap matrix at a given k point. It is faster that the sisl version. Args: H : np.array_like Hamiltonian in spin box form ss : np.array_like Overlap matrix in spin box form sc_off : list supercell indexes of the Hamiltonian k : tuple, optional The k point where the matrices are set up. Defaults to (0, 0, 0) Returns: np.array_like Hamiltonian at the given k point np.array_like Overlap matrix at the given k point """ # this two conversion lines are from the sisl source k = np.asarray(k, np.float64) k.shape = (-1,) # this generates the list of phases phases = np.exp(-1j * 2 * np.pi * k @ sc_off.T) # phases applied to the hamiltonian HK = np.einsum("abc,a->bc", H, phases) SK = np.einsum("abc,a->bc", ss, phases) return HK, SK def make_kset(dirs: str = "xyz", NUMK: int = 20) -> np.array: """Simple k-grid generator to sample the Brillouin zone. Depending on the value of the dirs argument k sampling in 1,2 or 3 dimensions is generated. If dirs argument does not contain either of x, y or z a kset of a single k-pont at the origin is returned. The total number of k points is the NUMK**(dimensions) Args: dirs : str, optional Directions of the k points in the Brillouin zone. They are the three lattice vectors. Defaults to "xyz" NUMK : int, optional The number of k points in a direction. Defaults to 20 Returns: np.array_like An array of k points that uniformly sample the Brillouin zone in the given directions """ # if there is no xyz in dirs return the Gamma point if not (sum([d in dirs for d in "xyz"])): return np.array([[0, 0, 0]]) kran = len(dirs) * [np.linspace(0, 1, NUMK, endpoint=False)] mg = np.meshgrid(*kran) directions = dict() for d in enumerate(dirs): directions[d[1]] = mg[d[0]].flatten() for d in "xyz": if not (d in dirs): directions[d] = 0 * directions[dirs[0]] kset = np.array([directions[d] for d in "xyz"]).T return kset # just an empty container class class Container: pass def make_contour( emin: float = -20, emax: float = 0.0, enum: int = 42, p: float = 150 ) -> Container: """A more sophisticated contour generator. Calculates the parameters for the complex contour integral. It uses the Legendre-Gauss quadrature method. It returns a class that contains the information for the contour integral. Args: emin : int, optional Energy minimum of the contour. Defaults to -20 emax : float, optional Energy maximum of the contour. Defaults to 0.0, so the Fermi level enum : int, optional Number of sample points along the contour. Defaults to 42 p : int, optional Shape parameter that describes the distribution of the sample points. Defaults to 150 Returns: Container Contains all the information for the contour integral """ x, wl = roots_legendre(enum) R = (emax - emin) / 2 # radius z0 = (emax + emin) / 2 # center point y1 = -np.log(1 + np.pi * p) # lower bound y2 = 0 # upper bound y = (y2 - y1) / 2 * x + (y2 + y1) / 2 phi = (np.exp(-y) - 1) / p # angle parameter ze = z0 + R * np.exp(1j * phi) # complex points for path we = -(y2 - y1) / 2 * np.exp(-y) / p * 1j * (ze - z0) * wl cont = Container() cont.R = R cont.z0 = z0 cont.ze = ze cont.we = we cont.enum = enum return cont def tau_u(u: Union[list, np.array]) -> np.array: """Pauli matrix in direction u. Returns the vector u in the basis of the Pauli matrices. Args: u : list or np.array_like The direction Returns: np.array_like Arbitrary direction in the base of the Pauli matrices """ # u is force to be of unit length u = u / np.linalg.norm(u) return u[0] * TAU_X + u[1] * TAU_Y + u[2] * TAU_Z # def crossM(u: Union[list, np.array]) -> np.array: """Definition for the cross-product matrix. It acts as a cross product with vector u. Args: u : list or np.array_like The second vector in the cross product Returns: np.array_like The matrix that represents teh cross product with a vector """ return np.array([[0, -u[2], u[1]], [u[2], 0, -u[0]], [-u[1], u[0], 0]]) def RotM(theta: float, u: np.array, eps: float = 1e-10) -> np.array: """Definition of rotation matrix with angle theta around direction u. Args: theta : float The angle of rotation u : np.array_like The rotation axis eps : float, optional Cutoff for small elements in the resulting matrix. Defaults to 1e-10 Returns: np.array_like The rotation matrix """ u = u / np.linalg.norm(u) M = ( np.cos(theta) * np.eye(3) + np.sin(theta) * crossM(u) + (1 - np.cos(theta)) * np.outer(u, u) ) # kill off small numbers M[abs(M) < eps] = 0.0 return M def RotMa2b(a: np.array, b: np.array, eps: float = 1e-10) -> np.array: """Definition of rotation matrix rotating unit vector a to unit vector b. Function returns array R such that R @ a = b holds. Args: a : np.array_like First vector b : np.array_like Second vector eps : float, optional Cutoff for small elements in the resulting matrix. Defaults to 1e-10 Returns: np.array_like The rotation matrix with the above property """ v = np.cross(a, b) c = a @ b M = np.eye(3) + crossM(v) + crossM(v) @ crossM(v) / (1 + c) # kill off small numbers M[abs(M) < eps] = 0.0 return M def read_siesta_emin(eigfile: str) -> float: """It reads the lowest energy level from the siesta run. It uses the .EIG file from siesta that contains the eigenvalues. Args: eigfile : str The path to the .EIG file Returns: float The energy minimum """ # read the file eigenvalues = eigSileSiesta(eigfile).read_data() return eigenvalues.min() def int_de_ke(traced: np.array, we: float) -> np.array: """It numerically integrates the traced matrix. It is a wrapper from numpy.trapz and it contains the relevant constants to calculate the energy integral from equation 93 or 96. Args: traced : np.array_like The trace of a matrix or a matrix product we : float The weight of a point on the contour Returns: float The energy calculated from the integral formula """ return np.trapz(-1 / np.pi * np.imag(traced * we))