# Copyright (c) [2024] [] # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import numpy as np import pytest from hypothesis import given from hypothesis import strategies as st from numpy.testing import assert_allclose, assert_array_almost_equal from grogupy.globals import TAU_0, TAU_X, TAU_Y, TAU_Z from grogupy.utilities import ( RotM, RotMa2b, crossM, hsk, int_de_ke, make_contour, make_kset, read_siesta_emin, tau_u, ) # Test basic Pauli matrix properties def test_pauli_matrices_properties(): """Test fundamental properties of Pauli matrices""" # Test anticommutation relations assert_array_almost_equal(TAU_X @ TAU_Y + TAU_Y @ TAU_X, np.zeros((2, 2))) assert_array_almost_equal(TAU_Y @ TAU_Z + TAU_Z @ TAU_Y, np.zeros((2, 2))) assert_array_almost_equal(TAU_Z @ TAU_X + TAU_X @ TAU_Z, np.zeros((2, 2))) # Test square of Pauli matrices equals identity assert_array_almost_equal(TAU_X @ TAU_X, TAU_0) assert_array_almost_equal(TAU_Y @ TAU_Y, TAU_0) assert_array_almost_equal(TAU_Z @ TAU_Z, TAU_0) # Test Hermiticity assert_array_almost_equal(TAU_X, TAU_X.conj().T) assert_array_almost_equal(TAU_Y, TAU_Y.conj().T) assert_array_almost_equal(TAU_Z, TAU_Z.conj().T) # Test hsk function def test_hsk_basics(): """Test basic properties of the hsk function""" size = 4 H = np.random.random((3, size, size)) + 1j * np.random.random((3, size, size)) ss = np.random.random((3, size, size)) + 1j * np.random.random((3, size, size)) sc_off = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0]]) k = np.array([0.1, 0.2, 0.3]) HK, SK = hsk(H, ss, sc_off, k) # Check shapes assert HK.shape == (size, size) assert SK.shape == (size, size) # Test k=0 case gives the central cell contribution HK0, SK0 = hsk(H, ss, sc_off, np.zeros(3)) assert_array_almost_equal(HK0, H[0]) assert_array_almost_equal(SK0, ss[0]) @given(st.integers(min_value=1, max_value=20)) def test_make_kset_dimensions(num_k): """Test k-point set generation with different dimensions""" # Test 1D kset_x = make_kset("x", num_k) assert kset_x.shape[1] == 3 assert len(np.unique(kset_x[:, 1])) == 1 # y coordinates should be same assert len(np.unique(kset_x[:, 2])) == 1 # z coordinates should be same # Test 2D kset_xy = make_kset("xy", num_k) assert kset_xy.shape[1] == 3 assert len(np.unique(kset_xy[:, 2])) == 1 # z coordinates should be same # Test 3D kset_xyz = make_kset("xyz", num_k) assert kset_xyz.shape[1] == 3 assert len(kset_xyz) == num_k**3 def test_make_contour(): """Test contour generation for energy integration""" emin = -20 emax = 0.0 enum = 42 p = 150 cont = make_contour(emin, emax, enum, p) # Check attributes assert hasattr(cont, "R") assert hasattr(cont, "z0") assert hasattr(cont, "ze") assert hasattr(cont, "we") assert hasattr(cont, "enum") # Check dimensions assert len(cont.ze) == enum assert len(cont.we) == enum # Check basic properties assert cont.z0 == (emax + emin) / 2 assert cont.R == (emax - emin) / 2 assert cont.enum == enum @given(st.lists(st.floats(min_value=-1, max_value=1), min_size=3, max_size=3)) def test_tau_u(u): """Test generation of Pauli matrix in arbitrary direction""" u = np.array(u) if np.all(u == 0): u = np.array([1, 0, 0]) # Handle zero vector case u = u / np.linalg.norm(u) result = tau_u(u) # Check result is 2x2 assert result.shape == (2, 2) # Check Hermiticity assert_array_almost_equal(result, result.conj().T) # Check trace is zero assert abs(np.trace(result)) < 1e-10 # Check square equals identity assert_array_almost_equal(result @ result, np.eye(2)) def test_crossM(): """Test cross product matrix generation""" u = np.array([1.0, 2.0, 3.0]) v = np.array([4.0, 5.0, 6.0]) # Test that crossM(u) @ v equals np.cross(u, v) assert_array_almost_equal(crossM(u) @ v, np.cross(u, v)) # Test antisymmetry assert_array_almost_equal(crossM(u), -crossM(u).T) @pytest.mark.parametrize("theta", [0, np.pi / 4, np.pi / 2, np.pi]) def test_RotM(theta): """Test rotation matrix generation""" # Test rotation around z-axis u = np.array([0, 0, 1]) R = RotM(theta, u) # Check orthogonality assert_array_almost_equal(R @ R.T, np.eye(3)) # Check determinant is 1 assert_allclose(np.linalg.det(R), 1.0) # Test rotation of vector v = np.array([1, 0, 0]) rotated_v = R @ v expected_v = np.array([np.cos(theta), np.sin(theta), 0]) assert_array_almost_equal(rotated_v, expected_v) def test_RotMa2b(): """Test rotation matrix between two vectors""" # Test simple cases a = np.array([1, 0, 0]) b = np.array([0, 1, 0]) R = RotMa2b(a, b) # Check that R rotates a to b assert_array_almost_equal(R @ a, b) # Check orthogonality assert_array_almost_equal(R @ R.T, np.eye(3)) # Check determinant is 1 assert_allclose(np.linalg.det(R), 1.0) def test_read_siesta_emin(tmpdir): """Test reading minimum energy from SIESTA .EIG file""" # Create mock .EIG file eig_file = tmpdir / "test.EIG" with open(eig_file, "w") as f: # Write mock eigenvalues f.write("1.0 2.0 3.0\n-1.0 0.0 1.0\n") # Test reading minimum energy emin = read_siesta_emin(str(eig_file)) assert emin == -1.0 def test_int_de_ke(): """Test energy integral calculation""" # Create test data energy = np.linspace(-10, 10, 1000) traced = np.exp(-(energy**2)) # Gaussian function we = np.ones_like(energy) # Unit weights result = int_de_ke(traced, we) # Result should be real for real input assert np.imag(result) < 1e-10 # Test with complex input traced_complex = traced + 1j * traced result_complex = int_de_ke(traced_complex, we) assert isinstance(result_complex, complex) # Property-based tests @given(st.integers(min_value=2, max_value=10)) def test_make_kset_dimensions_property(num_k): """Property-based test for k-point set generation""" kset = make_kset("xyz", num_k) # All k-points should be in [0,1) assert np.all(kset >= 0) assert np.all(kset < 1) # Shape should be (num_k^3, 3) assert kset.shape == (num_k**3, 3) @given( st.floats(min_value=-20, max_value=-1), st.floats(min_value=0, max_value=1), st.integers(min_value=10, max_value=100), ) def test_make_contour_properties(emin, emax, enum): """Property-based test for contour generation""" cont = make_contour(emin, emax, enum, 150) # Check basic properties assert len(cont.ze) == enum assert len(cont.we) == enum assert cont.R > 0 assert cont.z0 == (emax + emin) / 2 if __name__ == "__main__": pytest.main([__file__])