grogupy package

Submodules

grogupy.core module

Docstring in core.

grogupy.core.build_hh_ss(dh)[source]

It builds the Hamiltonian and Overlap matrix from the sisl.dh class.

It restructures the data in the SPIN BOX representation, where NS is the number of supercells and NO is the number of orbitals.

Args:
dhsisl.physics.Hamiltonian

Hamiltonian read in by sisl

Returns:
hh(NS, NO, NO) np.array_like

Hamiltonian in SPIN BOX representation

ss(NS, NO, NO) np.array_like

Overlap matrix in SPIN BOX representation

grogupy.core.calc_Vu(H, Tu)[source]

Calculates the local perturbation in case of a spin rotation.

Args:
H(NO, NO) np.array_like

Hamiltonian

Tu(NO, NO) array_like

Rotation around u

Returns:
Vu1(NO, NO) np.array_like

First order perturbed matrix

Vu2(NO, NO) np.array_like

Second order perturbed matrix

grogupy.core.onsite_projection(matrix, idx1, idx2)[source]

It produces the slices of a matrix for the on site projection.

The slicing is along the last two axes as these contains the orbital indexing.

Args:
matrix(…, :, :) np.array_like

Some matrix

idxnp.array_like

The indexes of the orbitals

Returns:
np.array_like

Reduced matrix based on the projection

grogupy.core.parallel_Gk(HK, SK, eran, eset)[source]

Calculates the Greens function by inversion.

It calculates the Greens function on all the energy levels at the same time.

Args:
HK(NO, NO), np.array_like

Hamiltonian at a given k point

SK(NO, NO), np.array_like

Overlap Matrix at a given k point

eran(eset) np.array_like

Energy sample along the contour

esetint

Number of energy samples along the contour

Returns:
Gk(eset, NO, NO), np.array_like

Green’s function at a given k point

grogupy.core.remove_clutter_for_save(pairs, magnetic_entities)[source]

Removes unimportant data from the dictionaries.

It is used before saving to throw away data that is not needed for post processing.

Args:
pairsdict

Contains all the pair information

magnetic_entitiesdict

Contains all the magnetic entity information

Returns:
pairsdict

Contains all the reduced pair information

magnetic_entitiesdict

Contains all the reduced magnetic entity information

grogupy.core.sequential_GK(HK, SK, eran, eset)[source]

Calculates the Greens function by inversion.

It calculates sequentially over the energy levels.

Args:
HK(NO, NO), np.array_like

Hamiltonian at a given k point

SK(NO, NO), np.array_like

Overlap Matrix at a given k point

eran(eset) np.array_like

Energy sample along the contour

esetint

Number of energy samples along the contour

Returns:
Gk(eset, NO, NO), np.array_like

Green’s function at a given k point

grogupy.core.setup_pairs_and_magnetic_entities(magnetic_entities, pairs, dh, simulation_parameters)[source]

It creates the complete structure of the dictionaries and fills some basic data.

It creates orbital indexes, spin box indexes, coordinates and tags for magnetic entities. Furthermore it creates the structures for the energies, the perturbed potentials and the Greens function calculation. It dose the same for the pairs.

Args:
pairsdict

Contains the initial pair information

magnetic_entitiesdict

Contains the initial magnetic entity information

dhsisl.physics.Hamiltonian

Hamiltonian read in by sisl

simulation_parametersdict

A set of parameters from the simulation

Returns:
pairsdict

Contains the initial information and the complete structure

magnetic_entitiesdict

Contains the initial information and the complete structure

grogupy.grogu module

Docstring in grogupy.

grogupy.grogu.main(simulation_parameters, magnetic_entities, pairs)[source]
grogupy.grogu.parse_command_line()[source]

This function can read input from the command line.

grogupy.io module

Docstring in io.

grogupy.io.load_pickle(infile)[source]

Loads the data from the infile with pickle.

Args:
infilestr

Path to infile

Returns:
datadict

A dictionary of data

grogupy.io.print_atoms_and_pairs(magnetic_entities, pairs)[source]

It prints the pair and magnetic entity information for the grogu out.

Args:
magnetic_entitiesdict

It contains the data on the magnetic entities

pairsdict

It contains the data on the pairs

grogupy.io.print_job_description(simulation_parameters)[source]

It prints the parameters and the description of the job.

Args:
simulation_parametersdict

It contains the simulations parameters

grogupy.io.print_parameters(simulation_parameters)[source]

It prints the simulation parameters for the grogu out.

Args:
simulation_parametersdict

It contains the simulations parameters

grogupy.io.print_runtime_information(times)[source]

It prints the runtime information for the grogu out.

Args:
timesdict

It contains the runtime data

grogupy.io.process_input_args(default_arguments, fdf_arguments, command_line_arguments, accepted_inputs=['infile', 'outfile', 'scf_xcf_orientation', 'ref_xcf_orientations', 'kset', 'kdirs', 'ebot', 'eset', 'esetp', 'parallel_solver_for_Gk', 'padawan_mode'])[source]

It returns the final simulation parameters based on the inputs.

The merging is done in the order of priority: 1. command line arguments 2. fdf arguments 3. default arguments

Args:
default_argumentsdict

Default arguments from grogupy

fdf_argumentsdict

Arguments read from the fdf input file

command_line_argumentsdict

Arguments from the command line

Returns:
dict

The final simulation parameters

grogupy.io.read_fdf(path)[source]

It reads the simulation parameters, magnetic entities and pairs from the fdf.

Args:
pathstring

The path to the .fdf file

Returns:
fdf_argumentsdict

The read input arguments from the fdf file

magnetic_entitieslist

It contains the dictionaries associated with the magnetic entities

pairsdict

It contains the dictionaries associated with the pair information

grogupy.io.save_pickle(outfile, data)[source]

Saves the data in the outfile with pickle.

Args:
outfilestr

Path to outfile

datadict

Contains the data

grogupy.magnetism module

Docstring in magnetism.

grogupy.magnetism.blow_up_orbindx(orb_indices)[source]

Function to blow up orbital indices to make SPIN BOX indices.

Args:
orb_indicesnp.array_like

These are the indices in ORBITAL BOX

Returns:
orb_indicesnp.array_like

These are the indices in SPIN BOX

grogupy.magnetism.calculate_anisotropy_tensor(mag_ent)[source]

Calculates the renormalized anisotropy tensor from the energies.

It uses the grogu convention for output.

Args:
mag_entdict

An element from the magnetic entities

Returns:
Knp.array_like

elements of the anisotropy tensor

grogupy.magnetism.calculate_exchange_tensor(pair)[source]

Calculates the exchange tensor from the energies.

It produces the isotropic exchange, the relevant elements from the Dzyaloshinskii-Morilla (Dm) tensor, the symmetric-anisotropy and the complete exchange tensor.

Args:
pairdict

An element from the pairs

Returns:
J_isofloat

Isotropic exchange (Tr[J] / 3)

J_Snp.array_like

Symmetric-anisotropy (J_S = J - J_iso * I ––> Jxx, Jyy, Jxy, Jxz, Jyz)

Dnp.array_like

DM elements (Dx, Dy, Dz)

Jnp.array_like

Complete exchange tensor flattened (Jxx, Jxy, Jxz, Jyx, Jyy, Jyz, Jzx, Jzy, Jzz)

grogupy.magnetism.parse_magnetic_entity(dh, atom=None, l=None, **kwargs)[source]

Function to define orbital indexes of a given magnetic entity.

Args:
dhsisl.physics.Hamiltonian

Hamiltonian from sisl

atominteger or list of integers, optional

Defining atom (or atoms) in the unit cell forming the magnetic entity. Defaults to None

linteger, optional

Defining the angular momentum channel. Defaults to None

Returns:
list

The orbital indexes of the given magnetic entity

grogupy.magnetism.spin_tracer(M)[source]

Spin tracer utility.

This takes an operator with the orbital-spin sequence: orbital 1 up, orbital 1 down, orbital 2 up, orbital 2 down, that is in the SPIN-BOX representation, and extracts orbital dependent Pauli traces.

Args:
Mnp.array_like

Traceable matrix

Returns:
dict

It contains the traced matrix with “x”, “y”, “z” and “c”

grogupy.utilities module

Docstring in utilities.

grogupy.utilities.RotM(theta, u, eps=1e-10)[source]

Definition of rotation matrix with angle theta around direction u.

Args:
thetafloat

The angle of rotation

unp.array_like

The rotation axis

epsfloat, optional

Cutoff for small elements in the resulting matrix. Defaults to 1e-10

Returns:
np.array_like

The rotation matrix

grogupy.utilities.RotMa2b(a, b, eps=1e-10)[source]

Definition of rotation matrix rotating unit vector a to unit vector b.

Function returns array R such that R @ a = b holds.

Args:
anp.array_like

First vector

bnp.array_like

Second vector

epsfloat, optional

Cutoff for small elements in the resulting matrix. Defaults to 1e-10

Returns:
np.array_like

The rotation matrix with the above property

grogupy.utilities.commutator(a, b)[source]

Shorthand for commutator.

Commutator of two matrices in the mathematical sense.

Args:
anp.array_like

The first matrix

bnp.array_like

The second matrix

Returns:
np.array_like

The commutator of a and b

grogupy.utilities.crossM(u)[source]

Definition for the cross-product matrix.

It acts as a cross product with vector u.

Args:
ulist or np.array_like

The second vector in the cross product

Returns:
np.array_like

The matrix that represents teh cross product with a vector

grogupy.utilities.hsk(H, ss, sc_off, k=(0, 0, 0))[source]

Speed up Hk and Sk generation.

Calculates the Hamiltonian and the Overlap matrix at a given k point. It is faster that the sisl version.

Args:
Hnp.array_like

Hamiltonian in spin box form

ssnp.array_like

Overlap matrix in spin box form

sc_offlist

supercell indexes of the Hamiltonian

ktuple, optional

The k point where the matrices are set up. Defaults to (0, 0, 0)

Returns:
np.array_like

Hamiltonian at the given k point

np.array_like

Overlap matrix at the given k point

grogupy.utilities.int_de_ke(traced, we)[source]

It numerically integrates the traced matrix.

It is a wrapper from numpy.trapz and it contains the relevant constants to calculate the energy integral from equation 93 or 96.

Args:
tracednp.array_like

The trace of a matrix or a matrix product

wefloat

The weight of a point on the contour

Returns:
float

The energy calculated from the integral formula

grogupy.utilities.make_contour(emin=-20, emax=0.0, enum=42, p=150)[source]

A more sophisticated contour generator.

Calculates the parameters for the complex contour integral. It uses the Legendre-Gauss quadrature method. It returns a class that contains the information for the contour integral.

Args:
eminint, optional

Energy minimum of the contour. Defaults to -20

emaxfloat, optional

Energy maximum of the contour. Defaults to 0.0, so the Fermi level

enumint, optional

Number of sample points along the contour. Defaults to 42

pint, optional

Shape parameter that describes the distribution of the sample points. Defaults to 150

Returns:
ccont

Contains all the information for the contour integral

grogupy.utilities.make_kset(dirs='xyz', NUMK=20)[source]

Simple k-grid generator to sample the Brillouin zone.

Depending on the value of the dirs argument k sampling in 1,2 or 3 dimensions is generated. If dirs argument does not contain either of x, y or z a kset of a single k-pont at the origin is returned. The total number of k points is the NUMK**(dimensions)

Args:
dirsstr, optional

Directions of the k points in the Brillouin zone. They are the three lattice vectors. Defaults to “xyz”

NUMKint, optional

The number of k points in a direction. Defaults to 20

Returns:
np.array_like

An array of k points that uniformly sample the Brillouin zone in the given directions

grogupy.utilities.read_siesta_emin(eigfile)[source]

It reads the lowest energy level from the siesta run.

It uses the .EIG file from siesta that contains the eigenvalues.

Args:
eigfilestr

The path to the .EIG file

Returns:
float

The energy minimum

grogupy.utilities.tau_u(u)[source]

Pauli matrix in direction u.

Returns the vector u in the basis of the Pauli matrices.

Args:
ulist or np.array_like

The direction

Returns:
np.array_like

Arbitrary direction in the base of the Pauli matrices

Module contents

Docstring in init.