# Copyright (c) [2024] [] # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """Docstring in core. """ import numpy as np from numpy.linalg import inv from sisl.physics import Hamiltonian from grogupy.magnetism import blow_up_orbindx, parse_magnetic_entity from grogupy.utilities import commutator def onsite_projection(matrix: np.array, idx1: np.array, idx2: np.array) -> np.array: """It produces the slices of a matrix for the on site projection. The slicing is along the last two axes as these contains the orbital indexing. Args: matrix : (..., :, :) np.array_like Some matrix idx : np.array_like The indexes of the orbitals Returns: np.array_like Reduced matrix based on the projection """ return matrix[..., idx1, :][..., idx2] def calc_Vu(H: np.array, Tu: np.array) -> np.array: """Calculates the local perturbation in case of a spin rotation. Args: H : (NO, NO) np.array_like Hamiltonian Tu : (NO, NO) array_like Rotation around u Returns: Vu1 : (NO, NO) np.array_like First order perturbed matrix Vu2 : (NO, NO) np.array_like Second order perturbed matrix """ Vu1 = 1j / 2 * commutator(H, Tu) # equation 100 Vu2 = 1 / 8 * commutator(commutator(Tu, H), Tu) # equation 100 return Vu1, Vu2 def build_hh_ss(dh: Hamiltonian) -> tuple[np.array, np.array]: """It builds the Hamiltonian and Overlap matrix from the sisl.dh class. It restructures the data in the SPIN BOX representation, where NS is the number of supercells and NO is the number of orbitals. Args: dh : sisl.physics.Hamiltonian Hamiltonian read in by sisl Returns: hh : (NS, NO, NO) np.array_like Hamiltonian in SPIN BOX representation ss : (NS, NO, NO) np.array_like Overlap matrix in SPIN BOX representation """ NO = dh.no # shorthand for number of orbitals in the unit cell # preprocessing Hamiltonian and overlap matrix elements h11 = dh.tocsr(dh.M11r) h11 += dh.tocsr(dh.M11i) * 1.0j h11 = h11.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128") h22 = dh.tocsr(dh.M22r) h22 += dh.tocsr(dh.M22i) * 1.0j h22 = h22.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128") h12 = dh.tocsr(dh.M12r) h12 += dh.tocsr(dh.M12i) * 1.0j h12 = h12.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128") h21 = dh.tocsr(dh.M21r) h21 += dh.tocsr(dh.M21i) * 1.0j h21 = h21.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128") sov = ( dh.tocsr(dh.S_idx) .toarray() .reshape(NO, dh.n_s, NO) .transpose(0, 2, 1) .astype("complex128") ) # Reorganization of Hamiltonian and overlap matrix elements to SPIN BOX representation U = np.vstack( [np.kron(np.eye(NO, dtype=int), [1, 0]), np.kron(np.eye(NO, dtype=int), [0, 1])] ) # This is the permutation that transforms ud1ud2 to u12d12 # That is this transforms FROM SPIN BOX to ORBITAL BOX => U # the inverse transformation is U.T u12d12 to ud1ud2 # That is FROM ORBITAL BOX to SPIN BOX => U.T # From now on everything is in SPIN BOX!! hh, ss = np.array( [ U.T @ np.block([[h11[:, :, i], h12[:, :, i]], [h21[:, :, i], h22[:, :, i]]]) @ U for i in range(dh.lattice.nsc.prod()) ] ), np.array( [ U.T @ np.block( [[sov[:, :, i], sov[:, :, i] * 0], [sov[:, :, i] * 0, sov[:, :, i]]] ) @ U for i in range(dh.lattice.nsc.prod()) ] ) return hh, ss def setup_pairs_and_magnetic_entities( magnetic_entities: list, pairs: list, dh, simulation_parameters: dict ) -> tuple[list, list]: """It creates the complete structure of the dictionaries and fills some basic data. It creates orbital indexes, spin box indexes, coordinates and tags for magnetic entities. Furthermore it creates the structures for the energies, the perturbed potentials and the Greens function calculation. It dose the same for the pairs. Args: pairs : dict Contains the initial pair information magnetic_entities : dict Contains the initial magnetic entity information dh : sisl.physics.Hamiltonian Hamiltonian read in by sisl simulation_parameters : dict A set of parameters from the simulation Returns: pairs : dict Contains the initial information and the complete structure magnetic_entities : dict Contains the initial information and the complete structure """ # for every site we have to store 3 Greens function (and the associated _tmp-s) in the 3 reference directions for mag_ent in magnetic_entities: parsed = parse_magnetic_entity(dh, **mag_ent) # parse orbital indexes mag_ent["orbital_indices"] = parsed mag_ent["spin_box_indices"] = blow_up_orbindx( parsed ) # calculate spin box indexes # if orbital is not set use all if "l" not in mag_ent.keys(): mag_ent["l"] = "all" # tag creation for one atom if isinstance(mag_ent["atom"], int): mag_ent["tags"] = [ f"[{mag_ent['atom']}]{dh.atoms[mag_ent['atom']].tag}({mag_ent['l']})" ] mag_ent["xyz"] = [dh.xyz[mag_ent["atom"]]] # tag creation for more atoms if isinstance(mag_ent["atom"], list): mag_ent["tags"] = [] mag_ent["xyz"] = [] # iterate over atoms for atom_idx in mag_ent["atom"]: mag_ent["tags"].append( f"[{atom_idx}]{dh.atoms[atom_idx].tag}({mag_ent['l']})" ) mag_ent["xyz"].append(dh.xyz[atom_idx]) # calculate size for Greens function generation spin_box_shape = len(mag_ent["spin_box_indices"]) # we will store the second order energy derivations here mag_ent["energies"] = [] # These will be the perturbed potentials from eq. 100 mag_ent["Vu1"] = [] # so they are independent in memory mag_ent["Vu2"] = [] mag_ent["Gii"] = [] # Greens function mag_ent["Gii_tmp"] = [] # Greens function for parallelization for _ in simulation_parameters["ref_xcf_orientations"]: # Rotations for every quantization axis mag_ent["Vu1"].append([]) mag_ent["Vu2"].append([]) # Greens functions for every quantization axis mag_ent["Gii"].append( np.zeros( (simulation_parameters["eset"], spin_box_shape, spin_box_shape), dtype="complex128", ) ) mag_ent["Gii_tmp"].append( np.zeros( (simulation_parameters["eset"], spin_box_shape, spin_box_shape), dtype="complex128", ) ) # for every site we have to store 2x3 Greens function (and the associated _tmp-s) # in the 3 reference directions, because G_ij and G_ji are both needed for pair in pairs: # calculate distance xyz_ai = magnetic_entities[pair["ai"]]["xyz"] xyz_aj = magnetic_entities[pair["aj"]]["xyz"] xyz_aj = xyz_aj + pair["Ruc"] @ simulation_parameters["cell"] pair["dist"] = np.linalg.norm(xyz_ai - xyz_aj) # calculate size for Greens function generation spin_box_shape_i = len(magnetic_entities[pair["ai"]]["spin_box_indices"]) spin_box_shape_j = len(magnetic_entities[pair["aj"]]["spin_box_indices"]) # tag generation pair["tags"] = [] for mag_ent in [magnetic_entities[pair["ai"]], magnetic_entities[pair["aj"]]]: tag = "" # get atoms of magnetic entity atoms_idx = mag_ent["atom"] orbitals = mag_ent["l"] # if magnetic entity contains one atoms if isinstance(atoms_idx, int): tag += f"[{atoms_idx}]{dh.atoms[atoms_idx].tag}({orbitals})" # if magnetic entity contains more than one atoms if isinstance(atoms_idx, list): # iterate over atoms atom_group = "{" for atom_idx in atoms_idx: atom_group += f"[{atom_idx}]{dh.atoms[atom_idx].tag}({orbitals})--" # end {} of the atoms in the magnetic entity tag += atom_group[:-2] + "}" pair["tags"].append(tag) pair["energies"] = [] # we will store the second order energy derivations here pair["Gij"] = [] # Greens function pair["Gji"] = [] pair["Gij_tmp"] = [] # Greens function for parallelization pair["Gji_tmp"] = [] for _ in simulation_parameters["ref_xcf_orientations"]: # Greens functions for every quantization axis pair["Gij"].append( np.zeros( (simulation_parameters["eset"], spin_box_shape_i, spin_box_shape_j), dtype="complex128", ) ) pair["Gij_tmp"].append( np.zeros( (simulation_parameters["eset"], spin_box_shape_i, spin_box_shape_j), dtype="complex128", ) ) pair["Gji"].append( np.zeros( (simulation_parameters["eset"], spin_box_shape_j, spin_box_shape_i), dtype="complex128", ) ) pair["Gji_tmp"].append( np.zeros( (simulation_parameters["eset"], spin_box_shape_j, spin_box_shape_i), dtype="complex128", ) ) return pairs, magnetic_entities def parallel_Gk(HK: np.array, SK: np.array, eran: np.array, eset: int) -> np.array: """Calculates the Greens function by inversion. It calculates the Greens function on all the energy levels at the same time. Args: HK : (NO, NO), np.array_like Hamiltonian at a given k point SK : (NO, NO), np.array_like Overlap Matrix at a given k point eran : (eset) np.array_like Energy sample along the contour eset : int Number of energy samples along the contour Returns: Gk : (eset, NO, NO), np.array_like Green's function at a given k point """ # Calculates the Greens function on all the energy levels return inv(SK * eran.reshape(eset, 1, 1) - HK) def sequential_GK(HK: np.array, SK: np.array, eran: np.array, eset: int) -> np.array: """Calculates the Greens function by inversion. It calculates sequentially over the energy levels. Args: HK : (NO, NO), np.array_like Hamiltonian at a given k point SK : (NO, NO), np.array_like Overlap Matrix at a given k point eran : (eset) np.array_like Energy sample along the contour eset : int Number of energy samples along the contour Returns: Gk : (eset, NO, NO), np.array_like Green's function at a given k point """ # creates an empty holder Gk = np.zeros(shape=(eset, HK.shape[0], HK.shape[1]), dtype="complex128") # fills the holder sequentially by the Greens function on a given energy for j in range(eset): Gk[j] = inv(SK * eran[j] - HK) return Gk def remove_clutter_for_save(pairs: list, magnetic_entities: list) -> tuple[list, list]: """Removes unimportant data from the dictionaries. It is used before saving to throw away data that is not needed for post processing. Args: pairs : dict Contains all the pair information magnetic_entities : dict Contains all the magnetic entity information Returns: pairs : dict Contains all the reduced pair information magnetic_entities : dict Contains all the reduced magnetic entity information """ # remove clutter from magnetic entities and pair information for pair in pairs: del pair["Gij"] del pair["Gij_tmp"] del pair["Gji"] del pair["Gji_tmp"] for mag_ent in magnetic_entities: del mag_ent["Gii"] del mag_ent["Gii_tmp"] del mag_ent["Vu1"] del mag_ent["Vu2"] return pairs, magnetic_entities