import warnings from sys import stdout from timeit import default_timer as timer import numpy as np import sisl from mpi4py import MPI from numpy.linalg import inv from tqdm import tqdm from useful import * # runtime information times = dict() times["start_time"] = timer() # this cell mimicks an input file fdf = sisl.get_sile("./Jij_for_Marci_6p45ang/CrBr.fdf") # ./lat3_791/Fe3GeTe2.fdf # this information needs to be given at the input!! scf_xcf_orientation = np.array([0, 0, 1]) # z # list of reference directions for around which we calculate the derivatives # o is the quantization axis, v and w are two axes perpendicular to it # at this moment the user has to supply o,v,w on the input. # we can have some default for this ref_xcf_orientations = [ dict(o=np.array([1, 0, 0]), vw=[np.array([0, 1, 0]), np.array([0, 0, 1])]), dict(o=np.array([0, 1, 0]), vw=[np.array([1, 0, 0]), np.array([0, 0, 1])]), dict(o=np.array([0, 0, 1]), vw=[np.array([1, 0, 0]), np.array([0, 1, 0])]), ] """ # human readable definition of magnetic entities ./lat3_791/Fe3GeTe2.fdf magnetic_entities = [ dict(atom=3, l=2), dict(atom=4, l=2), dict(atom=5, l=2), dict( atom=[3, 4], ), ] # pair information ./lat3_791/Fe3GeTe2.fdf pairs = [ dict(ai=0, aj=1, Ruc=np.array([0, 0, 0])), # isotropic should be -82 meV dict( ai=0, aj=2, Ruc=np.array([0, 0, 0]) ), # these should all be around -41.9 in the isotropic part dict(ai=1, aj=2, Ruc=np.array([0, 0, 0])), dict(ai=0, aj=2, Ruc=np.array([-1, 0, 0])), dict(ai=1, aj=2, Ruc=np.array([-1, 0, 0])), ] """ # human readable definition of magnetic entities ./Jij_for_Marci_6p45ang/CrBr.fdf magnetic_entities = [ dict(atom=0, l=2), dict(atom=1, l=2), dict(atom=2, l=2), ] # pair information ./Jij_for_Marci_6p45ang/CrBr.fdf pairs = [ dict(ai=0, aj=1, Ruc=np.array([0, 0, 0])), dict(ai=0, aj=2, Ruc=np.array([0, 0, 0])), dict(ai=1, aj=2, Ruc=np.array([0, 0, 0])), dict(ai=0, aj=1, Ruc=np.array([1, 0, 0])), dict(ai=0, aj=2, Ruc=np.array([1, 0, 0])), dict(ai=0, aj=1, Ruc=np.array([-1, 0, 0])), dict(ai=0, aj=2, Ruc=np.array([-1, 0, 0])), dict(ai=0, aj=1, Ruc=np.array([0, 1, 0])), dict(ai=0, aj=2, Ruc=np.array([0, 1, 0])), dict(ai=0, aj=1, Ruc=np.array([0, 1, 0])), dict(ai=0, aj=2, Ruc=np.array([0, 1, 0])), ] # Brilloun zone sampling and Green function contour integral kset = 20 kdirs = "xy" ebot = -30 eset = 100 esetp = 10000 # MPI parameters comm = MPI.COMM_WORLD size = comm.Get_size() rank = comm.Get_rank() root_node = 0 if rank == root_node: print("Number of nodes in the parallel cluster: ", size) simulation_parameters = dict( path="Not yet specified.", scf_xcf_orientation=scf_xcf_orientation, ref_xcf_orientations=ref_xcf_orientations, kset=kset, kdirs=kdirs, ebot=ebot, eset=eset, esetp=esetp, parallel_size=size, ) # digestion of the input # read in hamiltonian dh = fdf.read_hamiltonian() try: simulation_parameters["geom"] = fdf.read_geometry() except: print("Error reading geometry.") # unit cell index uc_in_sc_idx = dh.lattice.sc_index([0, 0, 0]) times["setup_time"] = timer() NO = dh.no # shorthand for number of orbitals in the unit cell # preprocessing Hamiltonian and overlap matrix elements h11 = dh.tocsr(dh.M11r) h11 += dh.tocsr(dh.M11i) * 1.0j h11 = h11.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128") h22 = dh.tocsr(dh.M22r) h22 += dh.tocsr(dh.M22i) * 1.0j h22 = h22.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128") h12 = dh.tocsr(dh.M12r) h12 += dh.tocsr(dh.M12i) * 1.0j h12 = h12.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128") h21 = dh.tocsr(dh.M21r) h21 += dh.tocsr(dh.M21i) * 1.0j h21 = h21.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128") sov = ( dh.tocsr(dh.S_idx) .toarray() .reshape(NO, dh.n_s, NO) .transpose(0, 2, 1) .astype("complex128") ) # Reorganization of Hamiltonian and overlap matrix elements to SPIN BOX representation U = np.vstack( [np.kron(np.eye(NO, dtype=int), [1, 0]), np.kron(np.eye(NO, dtype=int), [0, 1])] ) # This is the permutation that transforms ud1ud2 to u12d12 # That is this transforms FROM SPIN BOX to ORBITAL BOX => U # the inverse transformation is U.T u12d12 to ud1ud2 # That is FROM ORBITAL BOX to SPIN BOX => U.T # From now on everything is in SPIN BOX!! hh, ss = np.array( [ U.T @ np.block([[h11[:, :, i], h12[:, :, i]], [h21[:, :, i], h22[:, :, i]]]) @ U for i in range(dh.lattice.nsc.prod()) ] ), np.array( [ U.T @ np.block([[sov[:, :, i], sov[:, :, i] * 0], [sov[:, :, i] * 0, sov[:, :, i]]]) @ U for i in range(dh.lattice.nsc.prod()) ] ) # symmetrizing Hamiltonian and overlap matrix to make them hermitian for i in range(dh.lattice.sc_off.shape[0]): j = dh.lattice.sc_index(-dh.lattice.sc_off[i]) h1, h1d = hh[i], hh[j] hh[i], hh[j] = (h1 + h1d.T.conj()) / 2, (h1d + h1.T.conj()) / 2 s1, s1d = ss[i], ss[j] ss[i], ss[j] = (s1 + s1d.T.conj()) / 2, (s1d + s1.T.conj()) / 2 # identifying TRS and TRB parts of the Hamiltonian TAUY = np.kron(np.eye(NO), tau_y) hTR = np.array([TAUY @ hh[i].conj() @ TAUY for i in range(dh.lattice.nsc.prod())]) hTRS = (hh + hTR) / 2 hTRB = (hh - hTR) / 2 # extracting the exchange field traced = [spin_tracer(hTRB[i]) for i in range(dh.lattice.nsc.prod())] # equation 77 XCF = np.array( [ np.array([f["x"] for f in traced]), np.array([f["y"] for f in traced]), np.array([f["z"] for f in traced]), ] ) # equation 77 # Check if exchange field has scalar part max_xcfs = abs(np.array(np.array([f["c"] for f in traced]))).max() if max_xcfs > 1e-12: warnings.warn( f"Exchange field has non negligible scalar part. Largest value is {max_xcfs}" ) times["H_and_XCF_time"] = timer() # for every site we have to store 3 Greens function (and the associated _tmp-s) in the 3 reference directions for i, mag_ent in enumerate(magnetic_entities): parsed = parse_magnetic_entity(dh, **mag_ent) # parse orbital indexes magnetic_entities[i]["orbital_indeces"] = parsed # calculate spin box indexes magnetic_entities[i]["spin_box_indeces"] = blow_up_orbindx(parsed) # calculate size for Greens function generation spin_box_shape = len(mag_ent["spin_box_indeces"]) mag_ent["energies"] = [] # we will store the second order energy derivations here mag_ent["Gii"] = [] # Greens function mag_ent["Gii_tmp"] = [] # Greens function for parallelization # These will be the perturbed potentials from eq. 100 mag_ent["Vu1"] = [list([]) for _ in range(len(ref_xcf_orientations))] mag_ent["Vu2"] = [list([]) for _ in range(len(ref_xcf_orientations))] for i in ref_xcf_orientations: # Greens functions for every quantization axis mag_ent["Gii"].append( np.zeros((eset, spin_box_shape, spin_box_shape), dtype="complex128") ) mag_ent["Gii_tmp"].append( np.zeros((eset, spin_box_shape, spin_box_shape), dtype="complex128") ) # for every site we have to store 2x3 Greens function (and the associated _tmp-s) # in the 3 reference directions, because G_ij and G_ji are both needed for pair in pairs: # calculate size for Greens function generation spin_box_shape_i = len(magnetic_entities[pair["ai"]]["spin_box_indeces"]) spin_box_shape_j = len(magnetic_entities[pair["aj"]]["spin_box_indeces"]) pair["energies"] = [] # we will store the second order energy derivations here pair["Gij"] = [] # Greens function pair["Gji"] = [] pair["Gij_tmp"] = [] # Greens function for parallelization pair["Gji_tmp"] = [] for i in ref_xcf_orientations: # Greens functions for every quantization axis pair["Gij"].append( np.zeros((eset, spin_box_shape_i, spin_box_shape_j), dtype="complex128") ) pair["Gij_tmp"].append( np.zeros((eset, spin_box_shape_i, spin_box_shape_j), dtype="complex128") ) pair["Gji"].append( np.zeros((eset, spin_box_shape_j, spin_box_shape_i), dtype="complex128") ) pair["Gji_tmp"].append( np.zeros((eset, spin_box_shape_j, spin_box_shape_i), dtype="complex128") ) times["site_and_pair_dictionaries_time"] = timer() kset = make_kset(dirs=kdirs, NUMK=kset) # generate k space sampling wkset = np.ones(len(kset)) / len(kset) # generate weights for k points kpcs = np.array_split(kset, size) # split the k points based on MPI size kpcs[root_node] = tqdm(kpcs[root_node], desc="k loop", file=stdout) times["k_set_time"] = timer() # this will contain the three hamiltonians in the reference directions needed to calculate the energy variations upon rotation hamiltonians = [] # iterate over the reference directions (quantization axes) for i, orient in enumerate(ref_xcf_orientations): # obtain rotated exchange field R = RotMa2b(scf_xcf_orientation, orient["o"]) rot_XCF = np.einsum("ij,jklm->iklm", R, XCF) rot_H_XCF = sum( [np.kron(rot_XCF[i], tau) for i, tau in enumerate([tau_x, tau_y, tau_z])] ) rot_H_XCF_uc = rot_H_XCF[uc_in_sc_idx] # obtain total Hamiltonian with the rotated exchange field rot_H = ( hTRS + rot_H_XCF ) # equation 76 ####################################################################################### hamiltonians.append( dict(orient=orient["o"], H=rot_H) ) # store orientation and rotated Hamiltonian # these are the infinitezimal rotations (for now) perpendicular to the quantization axis for u in orient["vw"]: Tu = np.kron(np.eye(NO, dtype=int), tau_u(u)) # section 2.H Vu1 = 1j / 2 * commutator(rot_H_XCF_uc, Tu) # equation 100 Vu2 = 1 / 8 * commutator(commutator(Tu, rot_H_XCF_uc), Tu) # equation 100 for mag_ent in magnetic_entities: # fill up the perturbed potentials (for now) based on the on-site projections mag_ent["Vu1"][i].append( Vu1[:, mag_ent["spin_box_indeces"]][mag_ent["spin_box_indeces"], :] ) mag_ent["Vu2"][i].append( Vu2[:, mag_ent["spin_box_indeces"]][mag_ent["spin_box_indeces"], :] ) times["reference_rotations_time"] = timer() if rank == root_node: print("Number of magnetic entities being calculated: ", len(magnetic_entities)) print( "We have to calculate the Greens function for three reference direction and we are going to calculate 15 energy integrals per site." ) print(f"The shape of the Hamiltonian and the Greens function is {NO}x{NO}.") comm.Barrier() # ---------------------------------------------------------------------- # make energy contour # we are working in eV now ! # and sisil shifts E_F to 0 ! cont = make_contour(emin=ebot, enum=eset, p=esetp) eran = cont.ze # ---------------------------------------------------------------------- # sampling the integrand on the contour and the BZ for k in kpcs[rank]: wk = wkset[rank] # weight of k point in BZ integral # iterate over reference directions for i, hamiltonian_orientation in enumerate(hamiltonians): # calculate Greens function H = hamiltonian_orientation["H"] HK, SK = hsk(H, ss, dh.sc_off, k) Gk = inv(SK * eran.reshape(eset, 1, 1) - HK) # solve Greens function sequentially for the energies, because of memory bound # Gk = np.zeros(shape=(eset, HK.shape[0], HK.shape[1]), dtype="complex128") # for j in range(eset): # Gk[j] = inv(SK * eran[j] - HK) # store the Greens function slice of the magnetic entities (for now) based on the on-site projections for mag_ent in magnetic_entities: mag_ent["Gii_tmp"][i] += ( Gk[:, mag_ent["spin_box_indeces"]][..., mag_ent["spin_box_indeces"]] * wk ) for pair in pairs: # add phase shift based on the cell difference phase = np.exp(1j * 2 * np.pi * k @ pair["Ruc"].T) # get the pair orbital sizes from the magnetic entities ai = magnetic_entities[pair["ai"]]["spin_box_indeces"] aj = magnetic_entities[pair["aj"]]["spin_box_indeces"] # store the Greens function slice of the magnetic entities (for now) based on the on-site projections pair["Gij_tmp"][i] += Gk[:, ai][..., aj] * phase * wk pair["Gji_tmp"][i] += Gk[:, aj][..., ai] * phase * wk # summ reduce partial results of mpi nodes for i in range(len(hamiltonians)): for mag_ent in magnetic_entities: comm.Reduce(mag_ent["Gii_tmp"][i], mag_ent["Gii"][i], root=root_node) for pair in pairs: comm.Reduce(pair["Gij_tmp"][i], pair["Gij"][i], root=root_node) comm.Reduce(pair["Gji_tmp"][i], pair["Gji"][i], root=root_node) times["green_function_inversion_time"] = timer() if rank == root_node: # iterate over the magnetic entities for tracker, mag_ent in enumerate(magnetic_entities): # iterate over the quantization axes for i, Gii in enumerate(mag_ent["Gii"]): storage = [] # iterate over the first and second order local perturbations for Vu1, Vu2 in zip(mag_ent["Vu1"][i], mag_ent["Vu2"][i]): # The Szunyogh-Lichtenstein formula traced = np.trace((Vu2 @ Gii + 0.5 * Gii @ Vu1 @ Gii), axis1=1, axis2=2) # evaluation of the contour integral storage.append(np.trapz(-1 / np.pi * np.imag(traced * cont.we))) # fill up the magnetic entities dictionary with the energies magnetic_entities[tracker]["energies"].append(storage) # iterate over the pairs for tracker, pair in enumerate(pairs): # iterate over the quantization axes for i, (Gij, Gji) in enumerate(zip(pair["Gij"], pair["Gji"])): site_i = magnetic_entities[pair["ai"]] site_j = magnetic_entities[pair["aj"]] storage = [] # iterate over the first order local perturbations in all possible orientations for the two sites for Vui in site_i["Vu1"][i]: for Vuj in site_j["Vu1"][i]: # The Szunyogh-Lichtenstein formula traced = np.trace((Vui @ Gij @ Vuj @ Gji), axis1=1, axis2=2) # evaluation of the contour integral storage.append(np.trapz(-1 / np.pi * np.imag(traced * cont.we))) # fill up the pairs dictionary with the energies pairs[tracker]["energies"].append(storage) times["end_time"] = timer() print_output(simulation_parameters, magnetic_entities, pairs, dh, times)