{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# use numpy number of threads one\n", "# print(threadpool_info())\n", "# from threadpoolctl import threadpool_info, threadpool_limits\n", "# user_api = threadpool_info()[0][\"user_api\"]\n", "# threadpool_limits(limits=1, user_api=user_api)\n", "# print(threadpool_info())" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "info:0: SislInfo: Please install tqdm (pip install tqdm) for better looking progress bars\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "0.14.3\n", "1.24.4\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "[Daniels-Air:00184] shmem: mmap: an error occurred while determining whether or not /var/folders/yh/dx7xl94n3g52ts3td8qcxjcc0000gn/T//ompi.Daniels-Air.501/jf.0/273678336/sm_segment.Daniels-Air.501.10500000.0 could be created.\n" ] } ], "source": [ "from sys import getsizeof\n", "from timeit import default_timer as timer\n", "\n", "import sisl\n", "from src.grogupy import *\n", "from mpi4py import MPI\n", "import warnings\n", "\n", "# runtime information\n", "times = dict()\n", "times[\"start_time\"] = timer()\n", "########################\n", "# it works if data is in downloads folder\n", "########################\n", "sisl.__version__\n", "\n", "try:\n", " print(sisl.__version__)\n", "except:\n", " print(\"sisl version unknown.\")\n", "\n", "try:\n", " print(np.__version__)\n", "except:\n", " print(\"numpy version unknown.\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "ename": "TypeError", "evalue": "'NoneType' object is not iterable", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[58], line 28\u001b[0m\n\u001b[1;32m 26\u001b[0m magnetic_entities \u001b[38;5;241m=\u001b[39m fdf\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMagneticEntities\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 27\u001b[0m fdf_magnetic_entities \u001b[38;5;241m=\u001b[39m []\n\u001b[0;32m---> 28\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m mag_ent \u001b[38;5;129;01min\u001b[39;00m magnetic_entities:\n\u001b[1;32m 29\u001b[0m row \u001b[38;5;241m=\u001b[39m mag_ent\u001b[38;5;241m.\u001b[39msplit()\n\u001b[1;32m 30\u001b[0m dat \u001b[38;5;241m=\u001b[39m []\n", "\u001b[0;31mTypeError\u001b[0m: 'NoneType' object is not iterable" ] } ], "source": [ "# open fdf input\n", "fdf = sisl.io.fdfSileSiesta(\"input.fdf\")\n", "\n", "fdf_parameters = dict()\n", "fdf_parameters[\"infile\"] = fdf.get(\"InputFile\")\n", "fdf_parameters[\"outfile\"] = fdf.get(\"OutputFile\")\n", "fdf_parameters[\"scf_xcf_orientation\"] = np.array(fdf.get(\"ScfXcfOrientation\"))\n", "\n", "rotations = fdf.get(\"XCF_Rotation\")\n", "if rotations is None:\n", " pass\n", "else:\n", " fdf_rot = []\n", " for rot in rotations:\n", " dat = np.array(rot.split()[:9], dtype=float)\n", " o = dat[:3]\n", " vw = dat[3:]\n", " vw = vw.reshape(2, 3)\n", " fdf_rot.append(dict(o=o, vw=vw))\n", " fdf_parameters[\"ref_xcf_orientations\"] = fdf_rot\n", "\n", "pairs = fdf.get(\"Pairs\")\n", "if pairs in None:\n", " pass\n", "else:\n", " fdf_pairs = []\n", " for fdf_pair in pairs:\n", " dat = np.array(fdf_pair.split()[:5], dtype=int)\n", " my_pair = dict(ai=dat[0], aj=dat[1], Ruc=np.array(dat[2:]))\n", " fdf_pairs.append(my_pair)\n", "\n", "magnetic_entities = fdf.get(\"MagneticEntities\")\n", "if magnetic_entities is None:\n", " pass\n", "else:\n", " fdf_magnetic_entities = []\n", " for mag_ent in magnetic_entities:\n", " row = mag_ent.split()\n", " dat = []\n", " for string in row:\n", " if string.find(\"#\") != -1:\n", " break\n", " dat.append(string)\n", " if dat[0] == \"Cluster\" or \"cluster\":\n", " fdf_magnetic_entities.append(dict(atom=dat[1:]))\n", " continue\n", " elif dat[0] == \"AtomShell\" or \"Atomshell\" or \"atomShell\" or \"atomshell\":\n", " fdf_magnetic_entities.append(dict(atom=dat[1], l=dat[2:]))\n", " continue\n", " elif dat[0] == \"AtomOrbital\" or \"Atomorbital\" or \"tomOrbital\" or \"atomorbital\":\n", " continue\n", " elif dat[0] == \"Orbitals\" or \"orbitals\":\n", " continue\n", " else:\n", " print(\"Unrecognizable magnetic entity in fdf\")\n", " break\n", "\n", "\n", "fdf_parameters[\"kset\"] = fdf.get(\"INTEGRAL.Kset\")\n", "fdf_parameters[\"kdirs\"] = fdf.get(\"INTEGRAL.Kdirs\")\n", "fdf_parameters[\"ebot\"] = fdf.get(\"INTEGRAL.Ebot\")\n", "fdf_parameters[\"eset\"] = fdf.get(\"INTEGRAL.Eset\")\n", "fdf_parameters[\"esetp\"] = fdf.get(\"INTEGRAL.Esetp\")\n", "fdf_parameters[\"parallel_solver_for_Gk\"] = fdf.get(\"GREEN.ParallelSolver\")\n", "fdf_parameters[\"padawan_mode\"] = fdf.get(\"PadawanMode\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "################################################################################\n", "#################################### INPUT #####################################\n", "################################################################################\n", "path = (\n", " \"/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf\"\n", ")\n", "outfile = \"./Fe3GeTe2_notebook\"\n", "\n", "# this information needs to be given at the input!!\n", "scf_xcf_orientation = np.array([0, 0, 1]) # z\n", "# list of reference directions for around which we calculate the derivatives\n", "# o is the quantization axis, v and w are two axes perpendicular to it\n", "# at this moment the user has to supply o,v,w on the input.\n", "# we can have some default for this\n", "ref_xcf_orientations = [\n", " dict(o=np.array([1, 0, 0]), vw=[np.array([0, 1, 0]), np.array([0, 0, 1])]),\n", " dict(o=np.array([0, 1, 0]), vw=[np.array([1, 0, 0]), np.array([0, 0, 1])]),\n", " dict(o=np.array([0, 0, 1]), vw=[np.array([1, 0, 0]), np.array([0, 1, 0])]),\n", "]\n", "magnetic_entities = [\n", " dict(atom=3, l=2),\n", " dict(atom=4, l=2),\n", " dict(atom=5, l=2),\n", "]\n", "pairs = [\n", " dict(ai=0, aj=1, Ruc=np.array([0, 0, 0])),\n", " dict(ai=0, aj=2, Ruc=np.array([0, 0, 0])),\n", " dict(ai=1, aj=2, Ruc=np.array([0, 0, 0])),\n", " dict(ai=0, aj=2, Ruc=np.array([-1, -1, 0])),\n", " dict(ai=1, aj=2, Ruc=np.array([-1, -1, 0])),\n", " dict(ai=0, aj=2, Ruc=np.array([-1, 0, 0])),\n", " dict(ai=1, aj=2, Ruc=np.array([-1, 0, 0])),\n", " dict(ai=1, aj=2, Ruc=np.array([-2, 0, 0])),\n", " dict(ai=1, aj=2, Ruc=np.array([-3, 0, 0])),\n", "]\n", "\n", "# Brilloun zone sampling and Green function contour integral\n", "kset = 3\n", "kdirs = \"xy\"\n", "ebot = -13\n", "eset = 300\n", "esetp = 1000\n", "################################################################################\n", "#################################### INPUT #####################################\n", "################################################################################" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "================================================================================================================================================================\n", "Input file: \n", "/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf\n", "Output file: \n", "./Fe3GeTe2_notebook.pickle\n", "Number of nodes in the parallel cluster: 1\n", "================================================================================================================================================================\n", "Cell [Ang]: \n", "[[ 3.79100000e+00 0.00000000e+00 0.00000000e+00]\n", " [-1.89550000e+00 3.28310231e+00 0.00000000e+00]\n", " [ 1.25954923e-15 2.18160327e-15 2.05700000e+01]]\n", "================================================================================================================================================================\n", "DFT axis: \n", "[0 0 1]\n", "Quantization axis and perpendicular rotation directions:\n", "[1 0 0] --» [array([0, 1, 0]), array([0, 0, 1])]\n", "[0 1 0] --» [array([1, 0, 0]), array([0, 0, 1])]\n", "[0 0 1] --» [array([1, 0, 0]), array([0, 1, 0])]\n", "================================================================================================================================================================\n", "Parameters for the contour integral:\n", "Number of k points: 3\n", "k point directions: xy\n", "Ebot: -13\n", "Eset: 300\n", "Esetp: 1000\n", "================================================================================================================================================================\n" ] }, { "ename": "KeyError", "evalue": "'calculate_charge'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[5], line 43\u001b[0m\n\u001b[1;32m 40\u001b[0m uc_in_sc_idx \u001b[38;5;241m=\u001b[39m dh\u001b[38;5;241m.\u001b[39mlattice\u001b[38;5;241m.\u001b[39msc_index([\u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m0\u001b[39m])\n\u001b[1;32m 42\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m rank \u001b[38;5;241m==\u001b[39m root_node:\n\u001b[0;32m---> 43\u001b[0m \u001b[43mprint_parameters\u001b[49m\u001b[43m(\u001b[49m\u001b[43msimulation_parameters\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 44\u001b[0m times[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msetup_time\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m timer()\n\u001b[1;32m 45\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSetup done. Elapsed time: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mtimes[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msetup_time\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m s\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", "File \u001b[0;32m~/Documents/oktatás/elte/phd/grogu_project/.venv/lib/python3.9/site-packages/grogupy/io.py:132\u001b[0m, in \u001b[0;36mprint_parameters\u001b[0;34m(simulation_parameters)\u001b[0m\n\u001b[1;32m 128\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mEsetp: \u001b[39m\u001b[38;5;124m\"\u001b[39m, simulation_parameters[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mesetp\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m 129\u001b[0m \u001b[38;5;28mprint\u001b[39m(\n\u001b[1;32m 130\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m================================================================================================================================================================\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 131\u001b[0m )\n\u001b[0;32m--> 132\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[43msimulation_parameters\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcalculate_charge\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m:\n\u001b[1;32m 133\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe calculated charge of the Hamiltonian in the quantization axes: \u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 134\u001b[0m \u001b[38;5;28mprint\u001b[39m(simulation_parameters[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcharges\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n", "\u001b[0;31mKeyError\u001b[0m: 'calculate_charge'" ] } ], "source": [ "# MPI parameters\n", "comm = MPI.COMM_WORLD\n", "size = comm.Get_size()\n", "rank = comm.Get_rank()\n", "root_node = 0\n", "\n", "# rename outfile\n", "if not outfile.endswith(\".pickle\"):\n", " outfile += \".pickle\"\n", "\n", "simulation_parameters = dict(\n", " infile=path,\n", " outfile=outfile,\n", " scf_xcf_orientation=scf_xcf_orientation,\n", " ref_xcf_orientations=ref_xcf_orientations,\n", " kset=kset,\n", " kdirs=kdirs,\n", " ebot=ebot,\n", " eset=eset,\n", " esetp=esetp,\n", " parallel_size=size,\n", ")\n", "\n", "# if ebot is not given put it 0.1 eV under the smallest energy\n", "if simulation_parameters[\"ebot\"] is None:\n", " try:\n", " eigfile = simulation_parameters[\"infile\"][:-3] + \"EIG\"\n", " simulation_parameters[\"ebot\"] = read_siesta_emin(eigfile) - 0.1\n", " except:\n", " print(\"Could not determine ebot.\")\n", " print(\"Parameter was not given and .EIG file was not found.\")\n", "# digestion of the input\n", "# read sile\n", "fdf = sisl.get_sile(simulation_parameters[\"infile\"])\n", "# read in hamiltonian\n", "dh = fdf.read_hamiltonian()\n", "simulation_parameters[\"cell\"] = fdf.read_geometry().cell\n", "\n", "# unit cell index\n", "uc_in_sc_idx = dh.lattice.sc_index([0, 0, 0])\n", "\n", "if rank == root_node:\n", " print_parameters(simulation_parameters)\n", " times[\"setup_time\"] = timer()\n", " print(f\"Setup done. Elapsed time: {times['setup_time']} s\")\n", " print(\n", " \"================================================================================================================================================================\"\n", " )" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "hh, ss, NO = build_hh_ss(dh)\n", "\n", "\n", "# symmetrizing Hamiltonian and overlap matrix to make them hermitian\n", "for i in range(dh.lattice.sc_off.shape[0]):\n", " j = dh.lattice.sc_index(-dh.lattice.sc_off[i])\n", " h1, h1d = hh[i], hh[j]\n", " hh[i], hh[j] = (h1 + h1d.T.conj()) / 2, (h1d + h1.T.conj()) / 2\n", " s1, s1d = ss[i], ss[j]\n", " ss[i], ss[j] = (s1 + s1d.T.conj()) / 2, (s1d + s1.T.conj()) / 2\n", "\n", "\n", "# identifying TRS and TRB parts of the Hamiltonian\n", "TAUY = np.kron(np.eye(NO), tau_y)\n", "hTR = np.array([TAUY @ hh[i].conj() @ TAUY for i in range(dh.lattice.nsc.prod())])\n", "hTRS = (hh + hTR) / 2\n", "hTRB = (hh - hTR) / 2\n", "\n", "# extracting the exchange field\n", "traced = [spin_tracer(hTRB[i]) for i in range(dh.lattice.nsc.prod())] # equation 77\n", "XCF = np.array(\n", " [\n", " np.array([f[\"x\"] / 2 for f in traced]),\n", " np.array([f[\"y\"] / 2 for f in traced]),\n", " np.array([f[\"z\"] / 2 for f in traced]),\n", " ]\n", ") # equation 77\n", "\n", "\n", "# Check if exchange field has scalar part\n", "max_xcfs = abs(np.array(np.array([f[\"c\"] / 2 for f in traced]))).max()\n", "if max_xcfs > 1e-12:\n", " warnings.warn(\n", " f\"Exchange field has non negligible scalar part. Largest value is {max_xcfs}\"\n", " )\n", "\n", "if rank == root_node:\n", " times[\"H_and_XCF_time\"] = timer()\n", " print(\n", " f\"Hamiltonian and exchange field rotated. Elapsed time: {times['H_and_XCF_time']} s\"\n", " )\n", " print(\n", " \"================================================================================================================================================================\"\n", " )" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "pairs, magnetic_entities = setup_pairs_and_magnetic_entities(\n", " magnetic_entities, pairs, dh, simulation_parameters\n", ")\n", "\n", "if rank == root_node:\n", " times[\"site_and_pair_dictionaries_time\"] = timer()\n", " print(\n", " f\"Site and pair dictionaries created. Elapsed time: {times['site_and_pair_dictionaries_time']} s\"\n", " )\n", " print(\n", " \"================================================================================================================================================================\"\n", " )" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "kset = make_kset(\n", " dirs=simulation_parameters[\"kdirs\"], NUMK=simulation_parameters[\"kset\"]\n", ") # generate k space sampling\n", "wkset = np.ones(len(kset)) / len(kset) # generate weights for k points\n", "kpcs = np.array_split(kset, size) # split the k points based on MPI size\n", "\n", "if tqdm_imported:\n", " kpcs[root_node] = tqdm(kpcs[root_node], desc=\"k loop\")\n", "\n", "if rank == root_node:\n", " times[\"k_set_time\"] = timer()\n", " print(f\"k set created. Elapsed time: {times['k_set_time']} s\")\n", " print(\n", " \"================================================================================================================================================================\"\n", " )" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# this will contain the three hamiltonians in the reference directions needed to calculate the energy variations upon rotation\n", "hamiltonians = []\n", "\n", "# iterate over the reference directions (quantization axes)\n", "for i, orient in enumerate(simulation_parameters[\"ref_xcf_orientations\"]):\n", " # obtain rotated exchange field\n", " R = RotMa2b(simulation_parameters[\"scf_xcf_orientation\"], orient[\"o\"])\n", " rot_XCF = np.einsum(\"ij,jklm->iklm\", R, XCF)\n", " rot_H_XCF = sum(\n", " [np.kron(rot_XCF[i], tau) for i, tau in enumerate([tau_x, tau_y, tau_z])]\n", " )\n", " rot_H_XCF_uc = rot_H_XCF[uc_in_sc_idx]\n", "\n", " # obtain total Hamiltonian with the rotated exchange field\n", " rot_H = hTRS + rot_H_XCF # equation 76\n", "\n", " hamiltonians.append(\n", " dict(\n", " orient=orient[\"o\"],\n", " H=rot_H,\n", " GS=np.zeros(\n", " (simulation_parameters[\"eset\"], rot_H.shape[1], rot_H.shape[2]),\n", " dtype=\"complex128\",\n", " ),\n", " GS_tmp=np.zeros(\n", " (simulation_parameters[\"eset\"], rot_H.shape[1], rot_H.shape[2]),\n", " dtype=\"complex128\",\n", " ),\n", " )\n", " ) # store orientation and rotated Hamiltonian\n", "\n", " # these are the rotations (for now) perpendicular to the quantization axis\n", " for u in orient[\"vw\"]:\n", " Tu = np.kron(np.eye(NO, dtype=int), tau_u(u)) # section 2.H\n", "\n", " Vu1, Vu2 = calc_Vu(rot_H_XCF_uc, Tu)\n", "\n", " for mag_ent in magnetic_entities:\n", " idx = mag_ent[\"spin_box_indeces\"]\n", " # fill up the perturbed potentials (for now) based on the on-site projections\n", " mag_ent[\"Vu1\"][i].append(Vu1[:, idx][idx, :])\n", " mag_ent[\"Vu2\"][i].append(Vu2[:, idx][idx, :])\n", "\n", "if rank == root_node:\n", " times[\"reference_rotations_time\"] = timer()\n", " print(\n", " f\"Rotations done perpendicular to quantization axis. Elapsed time: {times['reference_rotations_time']} s\"\n", " )\n", " print(\n", " \"================================================================================================================================================================\"\n", " )" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "if rank == root_node:\n", " print(\"Starting matrix inversions.\")\n", " print(f\"Total number of k points: {kset.shape[0]}\")\n", " print(f\"Number of energy samples per k point: {simulation_parameters['eset']}\")\n", " print(f\"Total number of directions: {len(hamiltonians)}\")\n", " print(\n", " f\"Total number of matrix inversions: {kset.shape[0] * len(hamiltonians) * simulation_parameters['eset']}\"\n", " )\n", " print(f\"The shape of the Hamiltonian and the Greens function is {NO}x{NO}={NO*NO}\")\n", " # https://stackoverflow.com/questions/70746660/how-to-predict-memory-requirement-for-np-linalg-inv\n", " # memory is O(64 n**2) for complex matrices\n", " memory_size = getsizeof(hamiltonians[0][\"H\"].base) / 1024\n", " print(\n", " f\"Memory taken by a single Hamiltonian is: {getsizeof(hamiltonians[0]['H'].base) / 1024} KB\"\n", " )\n", " print(f\"Expected memory usage per matrix inversion: {memory_size * 32} KB\")\n", " print(\n", " f\"Expected memory usage per k point for parallel inversion: {memory_size * len(hamiltonians) * simulation_parameters['eset'] * 32} KB\"\n", " )\n", " print(\n", " f\"Expected memory usage on root node: {len(np.array_split(kset, size)[0]) * memory_size * len(hamiltonians) * simulation_parameters['eset'] * 32 / 1024} MB\"\n", " )\n", " print(\n", " \"================================================================================================================================================================\"\n", " )\n", "\n", "comm.Barrier()\n", "# ----------------------------------------------------------------------\n", "\n", "# make energy contour\n", "# we are working in eV now !\n", "# and sisl shifts E_F to 0 !\n", "cont = make_contour(\n", " emin=simulation_parameters[\"ebot\"],\n", " enum=simulation_parameters[\"eset\"],\n", " p=simulation_parameters[\"esetp\"],\n", ")\n", "eran = cont.ze\n", "\n", "# ----------------------------------------------------------------------\n", "# sampling the integrand on the contour and the BZ\n", "for k in kpcs[rank]:\n", " wk = wkset[rank] # weight of k point in BZ integral\n", " # iterate over reference directions\n", " for i, hamiltonian_orientation in enumerate(hamiltonians):\n", " # calculate Greens function\n", " H = hamiltonian_orientation[\"H\"]\n", " HK, SK = hsk(H, ss, dh.sc_off, k)\n", "\n", " # solve Greens function sequentially for the energies, because of memory bound\n", " Gk = sequential_GK(HK, SK, eran, simulation_parameters[\"eset\"])\n", "\n", " # saving this for total charge\n", " hamiltonian_orientation[\"GS_tmp\"] += Gk @ SK * wk\n", "\n", " # store the Greens function slice of the magnetic entities (for now) based on the on-site projections\n", " for mag_ent in magnetic_entities:\n", " mag_ent[\"Gii_tmp\"][i] += (\n", " Gk[:, mag_ent[\"spin_box_indeces\"], :][:, :, mag_ent[\"spin_box_indeces\"]]\n", " * wk\n", " )\n", "\n", " for pair in pairs:\n", " # add phase shift based on the cell difference\n", " phase = np.exp(1j * 2 * np.pi * k @ pair[\"Ruc\"].T)\n", "\n", " # get the pair orbital sizes from the magnetic entities\n", " ai = magnetic_entities[pair[\"ai\"]][\"spin_box_indeces\"]\n", " aj = magnetic_entities[pair[\"aj\"]][\"spin_box_indeces\"]\n", "\n", " # store the Greens function slice of the magnetic entities (for now) based on the on-site projections\n", " pair[\"Gij_tmp\"][i] += Gk[:, ai][..., aj] * phase * wk\n", " pair[\"Gji_tmp\"][i] += Gk[:, aj][..., ai] / phase * wk\n", "\n", "# summ reduce partial results of mpi nodes\n", "for i in range(len(hamiltonians)):\n", " # for total charge\n", " comm.Reduce(hamiltonians[i][\"GS_tmp\"], hamiltonians[i][\"GS\"], root=root_node)\n", "\n", " for mag_ent in magnetic_entities:\n", " comm.Reduce(mag_ent[\"Gii_tmp\"][i], mag_ent[\"Gii\"][i], root=root_node)\n", "\n", " for pair in pairs:\n", " comm.Reduce(pair[\"Gij_tmp\"][i], pair[\"Gij\"][i], root=root_node)\n", " comm.Reduce(pair[\"Gji_tmp\"][i], pair[\"Gji\"][i], root=root_node)\n", "\n", "if rank == root_node:\n", " times[\"green_function_inversion_time\"] = timer()\n", " print(\n", " f\"Calculated Greens functions. Elapsed time: {times['green_function_inversion_time']} s\"\n", " )\n", " print(\n", " \"================================================================================================================================================================\"\n", " )" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "if rank == root_node:\n", " # Calculate total charge\n", " for hamiltonian in hamiltonians:\n", " GS = hamiltonian[\"GS\"]\n", " traced = np.trace((GS), axis1=1, axis2=2)\n", " print(\"Total charge: \", int_de_ke(traced, cont.we))\n", "\n", " # iterate over the magnetic entities\n", " for tracker, mag_ent in enumerate(magnetic_entities):\n", " # iterate over the quantization axes\n", " for i, Gii in enumerate(mag_ent[\"Gii\"]):\n", " storage = []\n", " # iterate over the first and second order local perturbations\n", " for Vu1, Vu2 in zip(mag_ent[\"Vu1\"][i], mag_ent[\"Vu2\"][i]):\n", " # The Szunyogh-Lichtenstein formula\n", " traced = np.trace((Vu2 @ Gii + 0.5 * Gii @ Vu1 @ Gii), axis1=1, axis2=2)\n", " # evaluation of the contour integral\n", " storage.append(int_de_ke(traced, cont.we))\n", "\n", " # fill up the magnetic entities dictionary with the energies\n", " magnetic_entities[tracker][\"energies\"].append(storage)\n", " # convert to np array\n", " magnetic_entities[tracker][\"energies\"] = np.array(\n", " magnetic_entities[tracker][\"energies\"]\n", " )\n", " print(\"Magnetic entities integrated.\")\n", "\n", " # iterate over the pairs\n", " for tracker, pair in enumerate(pairs):\n", " # iterate over the quantization axes\n", " for i, (Gij, Gji) in enumerate(zip(pair[\"Gij\"], pair[\"Gji\"])):\n", " site_i = magnetic_entities[pair[\"ai\"]]\n", " site_j = magnetic_entities[pair[\"aj\"]]\n", "\n", " storage = []\n", " # iterate over the first order local perturbations in all possible orientations for the two sites\n", " for Vui in site_i[\"Vu1\"][i]:\n", " for Vuj in site_j[\"Vu1\"][i]:\n", " # The Szunyogh-Lichtenstein formula\n", " traced = np.trace((Vui @ Gij @ Vuj @ Gji), axis1=1, axis2=2)\n", " # evaluation of the contour integral\n", " storage.append(int_de_ke(traced, cont.we))\n", " # fill up the pairs dictionary with the energies\n", " pairs[tracker][\"energies\"].append(storage)\n", " # convert to np array\n", " pairs[tracker][\"energies\"] = np.array(pairs[tracker][\"energies\"])\n", "\n", " print(\"Pairs integrated.\")\n", "\n", " # calculate magnetic parameters\n", " for mag_ent in magnetic_entities:\n", " Kxx, Kyy, Kzz, consistency = calculate_anisotropy_tensor(mag_ent)\n", " mag_ent[\"K\"] = np.array([Kxx, Kyy, Kzz]) * sisl.unit_convert(\"eV\", \"meV\")\n", " mag_ent[\"K_consistency\"] = consistency\n", "\n", " for pair in pairs:\n", " J_iso, J_S, D, J = calculate_exchange_tensor(pair)\n", " pair[\"J_iso\"] = J_iso * sisl.unit_convert(\"eV\", \"meV\")\n", " pair[\"J_S\"] = J_S * sisl.unit_convert(\"eV\", \"meV\")\n", " pair[\"D\"] = D * sisl.unit_convert(\"eV\", \"meV\")\n", " pair[\"J\"] = J * sisl.unit_convert(\"eV\", \"meV\")\n", "\n", " print(\"Magnetic parameters calculated.\")\n", "\n", " times[\"end_time\"] = timer()\n", " print(\n", " \"##################################################################### GROGU OUTPUT #############################################################################\"\n", " )\n", "\n", " print_parameters(simulation_parameters)\n", " print_atoms_and_pairs(magnetic_entities, pairs)\n", " print_runtime_information(times)\n", "\n", " pairs, magnetic_entities = remove_clutter_for_save(pairs, magnetic_entities)\n", " # create output dictionary with all the relevant data\n", " results = dict(\n", " parameters=simulation_parameters,\n", " magnetic_entities=magnetic_entities,\n", " pairs=pairs,\n", " runtime=times,\n", " )\n", "\n", " save_pickle(simulation_parameters[\"outfile\"], results)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "========================================\n", " \n", "Atom Angstrom\n", "# Label, x y z Sx Sy Sz #Q Lx Ly Lz Jx Jy Jz\n", "--------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n", "Te1 1.8955 1.0943 13.1698 -0.0000 0.0000 -0.1543 # 5.9345 -0.0000 0.0000 -0.0537 -0.0000 0.0000 -0.2080 \n", "Te2 1.8955 1.0943 7.4002 0.0000 -0.0000 -0.1543 # 5.9345 0.0000 -0.0000 -0.0537 0.0000 -0.0000 -0.2080 \n", "Ge3 -0.0000 2.1887 10.2850 0.0000 0.0000 -0.1605 # 3.1927 -0.0000 0.0000 0.0012 0.0000 0.0000 -0.1593 \n", "Fe4 -0.0000 0.0000 11.6576 0.0001 -0.0001 2.0466 # 8.3044 0.0000 -0.0000 0.1606 0.0001 -0.0001 2.2072 \n", "Fe5 -0.0000 0.0000 8.9124 -0.0001 0.0001 2.0466 # 8.3044 -0.0000 0.0000 0.1606 -0.0001 0.0001 2.2072 \n", "Fe6 1.8955 1.0944 10.2850 0.0000 0.0000 1.5824 # 8.3296 -0.0000 -0.0000 0.0520 -0.0000 0.0000 1.6344 \n", "==================================================================================================================================\n", " \n", "Exchange meV\n", "--------------------------------------------------------------------------------\n", "# at1 at2 i j k # d (Ang)\n", "--------------------------------------------------------------------------------\n", "Fe4 Fe5 0 0 0 # 2.7452\n", "Isotropic -82.0854\n", "DMI 0.12557 -0.00082199 6.9668e-08\n", "Symmetric-anisotropy -0.60237 -0.83842 -0.00032278 -1.2166e-05 -3.3923e-05\n", "--------------------------------------------------------------------------------\n", "Fe4 Fe6 0 0 0 # 2.5835\n", "Isotropic -41.9627\n", "DMI 1.1205 -1.9532 0.0018386\n", "Symmetric-anisotropy 0.26007 -0.00013243 0.12977 -0.069979 -0.042066\n", "--------------------------------------------------------------------------------\n", "\n", "\n", "On-site meV\n", "----------------------------------------\n", "Fe4\n", "0.16339\t0.16068\t0\t0\t0\t0\n", "========================================\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.6" } }, "nbformat": 4, "nbformat_minor": 2 }