# Copyright (c) [2024] [] # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """Docstring in io. """ from pickle import dump, load import numpy as np from sisl.io import fdfSileSiesta # list of accepted input parameters ACCEPTED_INPUTS = [ "infile", "outfile", "scf_xcf_orientation", "ref_xcf_orientations", "kset", "kdirs", "ebot", "eset", "esetp", "parallel_solver_for_Gk", "padawan_mode", ] default_arguments = dict( infile=None, outfile=None, scf_xcf_orientation=np.array([0, 0, 1]), ref_xcf_orientations=[ dict(o=np.array([1, 0, 0]), vw=[np.array([0, 1, 0]), np.array([0, 0, 1])]), dict(o=np.array([0, 1, 0]), vw=[np.array([1, 0, 0]), np.array([0, 0, 1])]), dict(o=np.array([0, 0, 1]), vw=[np.array([1, 0, 0]), np.array([0, 1, 0])]), ], kset=2, kdirs="xyz", ebot=None, eset=42, esetp=1000, parallel_solver_for_Gk=False, padawan_mode=True, ) def read_fdf(path): """It reads the simulation parameters, magnetic entities and pairs from the fdf. Args: path : string The path to the .fdf file Returns: fdf_arguments : dict The read input arguments from the fdf file magnetic_entities : list It contains the dictionaries associated with the magnetic entities pairs : dict It contains the dictionaries associated with the pair information """ # read fdf file fdf = fdfSileSiesta(path) fdf_arguments = dict() InputFile = fdf.get("InputFile") if InputFile is not None: fdf_arguments["infile"] = InputFile OutputFile = fdf.get("OutputFile") if OutputFile is not None: fdf_arguments["outfile"] = OutputFile ScfXcfOrientation = fdf.get("ScfXcfOrientation") if ScfXcfOrientation is not None: fdf_arguments["scf_xcf_orientation"] = np.array(ScfXcfOrientation) XCF_Rotation = fdf.get("XCF_Rotation") if XCF_Rotation is not None: rotations = [] # iterate over rows for rot in XCF_Rotation: # convert row to dictionary dat = np.array(rot.split()[:9], dtype=float) o = dat[:3] vw = dat[3:].reshape(2, 3) rotations.append(dict(o=o, vw=vw)) fdf_arguments["ref_xcf_orientations"] = rotations Kset = fdf.get("INTEGRAL.Kset") if Kset is not None: fdf_arguments["kset"] = Kset Kdirs = fdf.get("INTEGRAL.Kdirs") if Kdirs is not None: fdf_arguments["kdirs"] = Kdirs # This is permitted because it means automatic Ebot definition fdf_arguments["ebot"] = fdf.get("INTEGRAL.Ebot") Eset = fdf.get("INTEGRAL.Eset") if Eset is not None: fdf_arguments["eset"] = Eset Esetp = fdf.get("INTEGRAL.Esetp") if Esetp is not None: fdf_arguments["esetp"] = Esetp ParallelSolver = fdf.get("GREEN.ParallelSolver") if ParallelSolver is not None: fdf_arguments["parallel_solver_for_Gk"] = ParallelSolver PadawanMode = fdf.get("PadawanMode") if PadawanMode is not None: fdf_arguments["padawan_mode"] = PadawanMode Pairs = fdf.get("Pairs") if Pairs is not None: pairs = [] # iterate over rows for fdf_pair in Pairs: # convert data dat = np.array(fdf_pair.split()[:5], dtype=int) # create pair dictionary my_pair = dict(ai=dat[0], aj=dat[1], Ruc=np.array(dat[2:])) pairs.append(my_pair) MagneticEntities = fdf.get("MagneticEntities") if MagneticEntities is not None: magnetic_entities = [] for mag_ent in MagneticEntities: row = mag_ent.split() dat = [] for string in row: if string.find("#") != -1: break dat.append(string) if dat[0] in {"Cluster", "cluster"}: magnetic_entities.append(dict(atom=[int(_) for _ in dat[1:]])) continue elif dat[0] in {"AtomShell", "Atomshell", "atomShell", "atomshell"}: magnetic_entities.append( dict(atom=int(dat[1]), l=[int(_) for _ in dat[2:]]) ) continue elif dat[0] in {"AtomOrbital", "Atomorbital", "tomOrbital", "atomorbital"}: magnetic_entities.append( dict(atom=int(dat[1]), orb=[int(_) for _ in dat[2:]]) ) continue elif dat[0] in {"Orbitals", "orbitals"}: magnetic_entities.append(dict(orb=[int(_) for _ in dat[1:]])) continue else: raise Exception("Unrecognizable magnetic entity in .fdf!") return fdf_arguments, magnetic_entities, pairs def process_input_args( default_arguments, fdf_arguments, command_line_arguments, accepted_inputs=ACCEPTED_INPUTS, ): """It returns the final simulation parameters based on the inputs. The merging is done in the order of priority: 1. command line arguments 2. fdf arguments 3. default arguments Args: default_arguments : dict Default arguments from grogupy fdf_arguments : dict Arguments read from the fdf input file command_line_arguments : dict Arguments from the command line Returns: dict The final simulation parameters """ # iterate over fdf_arguments and update default arguments for key, value in fdf_arguments.values(): if value is not None and key in accepted_inputs: default_arguments[key] = value # iterate over command_line_arguments and update default arguments for key, value in command_line_arguments.values(): if value is not None and key in accepted_inputs: default_arguments[key] = value return default_arguments def save_pickle(outfile, data): """Saves the data in the outfile with pickle. Args: outfile : str Path to outfile data : dict Contains the data """ # save dictionary with open(outfile, "wb") as output_file: dump(data, output_file) def load_pickle(infile): """Loads the data from the infile with pickle. Args: infile : str Path to infile Returns: data : dict A dictionary of data """ # open and read file with open(infile, "wb") as input_file: data = load(data, input_file) return data def print_job_description(simulation_parameters): """It prints the parameters and the description of the job. Args: simulation_parameters : dict It contains the simulations parameters """ print( "================================================================================================================================================================" ) print("Input file: ") print(simulation_parameters["infile"]) print("Output file: ") print(simulation_parameters["outfile"]) print( "Number of nodes in the parallel cluster: ", simulation_parameters["parallel_size"], ) if simulation_parameters["parallel_solver_for_Gk"]: print("solver used for Greens function calculation: parallel") else: print("solver used for Greens function calculation: sequential") print( "================================================================================================================================================================" ) print("Cell [Ang]: ") print(simulation_parameters["cell"]) print( "================================================================================================================================================================" ) print("DFT axis: ") print(simulation_parameters["scf_xcf_orientation"]) print("Quantization axis and perpendicular rotation directions:") for ref in simulation_parameters["ref_xcf_orientations"]: print(ref["o"], " --» ", ref["vw"]) print( "================================================================================================================================================================" ) print("Parameters for the contour integral:") print("Number of k points: ", simulation_parameters["kset"]) print("k point directions: ", simulation_parameters["kdirs"]) if simulation_parameters["automatic_ebot"]: print( "Ebot: ", simulation_parameters["ebot"], " WARNING: This was automatically determined!", ) else: print("Ebot: ", simulation_parameters["ebot"]) print("Eset: ", simulation_parameters["eset"]) print("Esetp: ", simulation_parameters["esetp"]) print( "================================================================================================================================================================" ) def print_parameters(simulation_parameters): """It prints the simulation parameters for the grogu out. Args: simulation_parameters : dict It contains the simulations parameters """ print( "================================================================================================================================================================" ) print("Input file: ") print(simulation_parameters["infile"]) print("Output file: ") print(simulation_parameters["outfile"]) print( "Number of nodes in the parallel cluster: ", simulation_parameters["parallel_size"], ) print( "================================================================================================================================================================" ) print("Cell [Ang]: ") print(simulation_parameters["cell"]) print( "================================================================================================================================================================" ) print("DFT axis: ") print(simulation_parameters["scf_xcf_orientation"]) print("Quantization axis and perpendicular rotation directions:") for ref in simulation_parameters["ref_xcf_orientations"]: print(ref["o"], " --» ", ref["vw"]) print( "================================================================================================================================================================" ) print("Parameters for the contour integral:") print("Number of k points: ", simulation_parameters["kset"]) print("k point directions: ", simulation_parameters["kdirs"]) print("Ebot: ", simulation_parameters["ebot"]) print("Eset: ", simulation_parameters["eset"]) print("Esetp: ", simulation_parameters["esetp"]) print( "================================================================================================================================================================" ) def print_atoms_and_pairs(magnetic_entities, pairs): """It prints the pair and magnetic entity information for the grogu out. Args: magnetic_entities : dict It contains the data on the magnetic entities pairs : dict It contains the data on the pairs """ print("Atomic information: ") print( "----------------------------------------------------------------------------------------------------------------------------------------------------------------" ) print( "[atom index]Element(orbitals) x [Ang] y [Ang] z [Ang] Sx Sy Sz Q Lx Ly Lz Jx Jy Jz" ) print( "----------------------------------------------------------------------------------------------------------------------------------------------------------------" ) # iterate over magnetic entities for mag_ent in magnetic_entities: # iterate over atoms for tag, xyz in zip(mag_ent["tags"], mag_ent["xyz"]): # coordinates and tag print(f"{tag} {xyz[0]} {xyz[1]} {xyz[2]}") print("") print( "================================================================================================================================================================" ) print("Anisotropy [meV]") print( "----------------------------------------------------------------------------------------------------------------------------------------------------------------" ) print("Magnetic entity x [Ang] y [Ang] z [Ang]") print( "----------------------------------------------------------------------------------------------------------------------------------------------------------------" ) # iterate over magnetic entities for mag_ent in magnetic_entities: # iterate over atoms for tag, xyz in zip(mag_ent["tags"], mag_ent["xyz"]): # coordinates and tag print(f"{tag} {xyz[0]} {xyz[1]} {xyz[2]}") print("Consistency check: ", mag_ent["K_consistency"]) print("Anisotropy diag: ", mag_ent["K"]) print("") print( "================================================================================================================================================================" ) print("Exchange [meV]") print( "----------------------------------------------------------------------------------------------------------------------------------------------------------------" ) print("Magnetic entity1 Magnetic entity2 [i j k] d [Ang]") print( "----------------------------------------------------------------------------------------------------------------------------------------------------------------" ) # iterate over pairs for pair in pairs: # print pair parameters print( f"{pair['tags'][0]} {pair['tags'][1]} {pair['Ruc']} d [Ang] {pair['dist']}" ) # print magnetic parameters print("Isotropic: ", pair["J_iso"], " # Tr[J] / 3") print("") print("DMI: ", pair["D"], " # Dx, Dy, Dz") print("") print( "Symmetric-anisotropy: ", pair["J_S"], " # J_S = J - J_iso * I ––> Jxx, Jyy, Jxy, Jxz, Jyz", ) print("") print("J: # Jxx, Jxy, Jxz, Jyx, Jyy, Jyz, Jzx, Jzy, Jzz") print(pair["J"]) print( "----------------------------------------------------------------------------------------------------------------------------------------------------------------" ) print( "================================================================================================================================================================" ) def print_runtime_information(times): """It prints the runtime information for the grogu out. Args: times : dict It contains the runtime data """ print("Runtime information: ") print(f"Total runtime: {times['end_time'] - times['start_time']} s") print( "----------------------------------------------------------------------------------------------------------------------------------------------------------------" ) print(f"Initial setup: {times['setup_time'] - times['start_time']} s") print( f"Hamiltonian conversion and XC field extraction: {times['H_and_XCF_time'] - times['setup_time']:.3f} s" ) print( f"Pair and site datastructure creatrions: {times['site_and_pair_dictionaries_time'] - times['H_and_XCF_time']:.3f} s" ) print( f"k set cration and distribution: {times['k_set_time'] - times['site_and_pair_dictionaries_time']:.3f} s" ) print( f"Rotating XC potential: {times['reference_rotations_time'] - times['k_set_time']:.3f} s" ) print( f"Greens function inversion: {times['green_function_inversion_time'] - times['reference_rotations_time']:.3f} s" ) print( f"Calculate energies and magnetic components: {times['end_time'] - times['green_function_inversion_time']:.3f} s" )