You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
grogu/test.py

193 lines
6.6 KiB

# Copyright (c) [2024] [Daniel Pozsar]
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from timeit import default_timer as timer
# runtime information
times = dict()
times["start_time"] = timer()
import warnings
from sys import getsizeof
import sisl
from mpi4py import MPI
from src.grogu_magn import *
# input output stuff
######################################################################
######################################################################
######################################################################
path = (
"/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf"
)
outfile = "./Fe3GeTe2_notebook"
magnetic_entities = [
dict(atom=3, l=2),
dict(atom=4, l=2),
dict(atom=5, l=2),
]
pairs = [
dict(ai=0, aj=1, Ruc=np.array([0, 0, 0])),
dict(ai=0, aj=2, Ruc=np.array([0, 0, 0])),
dict(ai=1, aj=2, Ruc=np.array([0, 0, 0])),
dict(ai=0, aj=2, Ruc=np.array([-1, -1, 0])),
dict(ai=1, aj=2, Ruc=np.array([-1, -1, 0])),
dict(ai=0, aj=2, Ruc=np.array([-1, 0, 0])),
dict(ai=1, aj=2, Ruc=np.array([-1, 0, 0])),
dict(ai=1, aj=2, Ruc=np.array([-2, 0, 0])),
dict(ai=1, aj=2, Ruc=np.array([-3, 0, 0])),
]
simulation_parameters = default_args
######################################################################
######################################################################
######################################################################
# MPI parameters
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
root_node = 0
# check versions for debugging
if rank == root_node:
try:
print(sisl.__version__)
except:
print("sisl version unknown.")
try:
print(np.__version__)
except:
print("numpy version unknown.")
# rename outfile
if not simulation_parameters["outfile"].endswith(".pickle"):
simulation_parameters["outfile"] += ".pickle"
# if ebot is not given put it 0.1 eV under the smallest energy
if simulation_parameters["ebot"] is None:
try:
eigfile = simulation_parameters["infile"][:-3] + "EIG"
simulation_parameters["ebot"] = read_siesta_emin(eigfile) - 0.1
except:
print("Could not determine ebot.")
print("Parameter was not given and .EIG file was not found.")
# read sile
fdf = sisl.get_sile(simulation_parameters["infile"])
# read in hamiltonian
dh = fdf.read_hamiltonian()
# read unit cell vectors
simulation_parameters["cell"] = fdf.read_geometry().cell
# unit cell index
uc_in_sc_idx = dh.lattice.sc_index([0, 0, 0])
if rank == root_node:
print_parameters(simulation_parameters)
times["setup_time"] = timer()
print(f"Setup done. Elapsed time: {times['setup_time']} s")
print(
"================================================================================================================================================================"
)
# reformat Hamltonian and Overlap matrix for manipulations
hh, ss, NO = build_hh_ss(dh)
# symmetrizing Hamiltonian and Overlap matrix to make them hermitian
for i in range(dh.lattice.sc_off.shape[0]):
j = dh.lattice.sc_index(-dh.lattice.sc_off[i])
h1, h1d = hh[i], hh[j]
hh[i], hh[j] = (h1 + h1d.T.conj()) / 2, (h1d + h1.T.conj()) / 2
s1, s1d = ss[i], ss[j]
ss[i], ss[j] = (s1 + s1d.T.conj()) / 2, (s1d + s1.T.conj()) / 2
# identifying TRS and TRB parts of the Hamiltonian
TAUY = np.kron(np.eye(NO), tau_y)
hTR = np.array([TAUY @ hh[i].conj() @ TAUY for i in range(dh.lattice.nsc.prod())])
hTRS = (hh + hTR) / 2
hTRB = (hh - hTR) / 2
# extracting the exchange field
traced = [spin_tracer(hTRB[i]) for i in range(dh.lattice.nsc.prod())] # equation 77
XCF = np.array(
[
np.array([f["x"] / 2 for f in traced]),
np.array([f["y"] / 2 for f in traced]),
np.array([f["z"] / 2 for f in traced]),
]
)
# check if exchange field has scalar part
max_xcfs = abs(np.array(np.array([f["c"] / 2 for f in traced]))).max()
if max_xcfs > 1e-12:
warnings.warn(
f"Exchange field has non negligible scalar part. Largest value is {max_xcfs}"
)
if rank == root_node:
times["H_and_XCF_time"] = timer()
print(
f"Hamiltonian and exchange field rotated. Elapsed time: {times['H_and_XCF_time']} s"
)
print(
"================================================================================================================================================================"
)
# initialize pairs and magnetic entities based on input information
pairs, magnetic_entities = setup_pairs_and_magnetic_entities(
magnetic_entities, pairs, dh, simulation_parameters
)
if rank == root_node:
times["site_and_pair_dictionaries_time"] = timer()
print(
f"Site and pair dictionaries created. Elapsed time: {times['site_and_pair_dictionaries_time']} s"
)
print(
"================================================================================================================================================================"
)
# generate k space sampling
kset = make_kset(
dirs=simulation_parameters["kdirs"], NUMK=simulation_parameters["kset"]
)
wkset = np.ones(len(kset)) / len(kset) # generate weights for k points
kpcs = np.array_split(kset, size) # split the k points based on MPI size
if tqdm_imported:
kpcs[root_node] = tqdm(kpcs[root_node], desc="k loop")
if rank == root_node:
times["k_set_time"] = timer()
print(f"k set created. Elapsed time: {times['k_set_time']} s")
print(
"================================================================================================================================================================"
)