You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
grogu/tests/test_core.py

172 lines
5.5 KiB

# Copyright (c) [2024] []
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import numpy as np
import pytest
from hypothesis import given
from hypothesis import strategies as st
from numpy.testing import assert_array_almost_equal
from grogupy.core import (
build_hh_ss,
calc_Vu,
commutator,
onsite_projection,
parallel_Gk,
sequential_GK,
)
# Helper function to generate complex arrays
def complex_arrays(shape):
return st.complex_numbers(
min_magnitude=0.0, max_magnitude=1e6, allow_infinity=False, allow_nan=False
).map(lambda x: np.full(shape, x))
# Test commutator function
def test_commutator_hermitian():
"""Test that commutator of Hermitian matrices is anti-Hermitian"""
a = np.array([[1, 1j], [-1j, 2]], dtype=np.complex128)
b = np.array([[3, -2j], [2j, 4]], dtype=np.complex128)
result = commutator(a, b)
# For Hermitian matrices, commutator should be anti-Hermitian
assert_array_almost_equal(result, -result.conj().T)
@given(st.integers(min_value=2, max_value=10))
def test_commutator_zero_identity(n):
"""Test that commutator of identity matrix with any matrix is zero"""
# Create random complex matrix
rng = np.random.default_rng(42)
a = rng.random((n, n)) + 1j * rng.random((n, n))
identity = np.eye(n)
result = commutator(a, identity)
assert_array_almost_equal(result, np.zeros_like(result))
# Test parallel_Gk and sequential_GK implementations
@pytest.mark.parametrize("size", [2, 4, 8])
def test_green_function_implementations_match(size):
"""Test that parallel and sequential Green's function calculations match"""
rng = np.random.default_rng(42)
# Generate test inputs
HK = rng.random((size, size)) + 1j * rng.random((size, size))
HK = (HK + HK.conj().T) / 2 # Make Hermitian
SK = np.eye(size) + 0.1 * (rng.random((size, size)) + 1j * rng.random((size, size)))
SK = (SK + SK.conj().T) / 2 # Make Hermitian
eran = rng.random(5) + 1j * rng.random(5)
eset = len(eran)
# Calculate using both methods
G_parallel = parallel_Gk(HK, SK, eran, eset)
G_sequential = sequential_GK(HK, SK, eran, eset)
assert_array_almost_equal(G_parallel, G_sequential)
# Test calc_Vu function
def test_calc_Vu_hermiticity():
"""Test that Vu1 and Vu2 maintain expected Hermiticity properties"""
rng = np.random.default_rng(42)
size = 4
# Create Hermitian Hamiltonian
H = rng.random((size, size)) + 1j * rng.random((size, size))
H = (H + H.conj().T) / 2
# Create unitary rotation matrix
Tu = rng.random((size, size)) + 1j * rng.random((size, size))
Tu = (Tu + Tu.conj().T) / 2
Vu1, Vu2 = calc_Vu(H, Tu)
# Vu1 should be anti-Hermitian (from commutator properties)
assert_array_almost_equal(Vu1, -Vu1.conj().T)
# Vu2 should be Hermitian
assert_array_almost_equal(Vu2, Vu2.conj().T)
# Test onsite_projection function
def test_onsite_projection():
"""Test basic properties of onsite projection"""
size = 4
idx1 = np.array([0, 1])
idx2 = np.array([2, 3])
# Create test matrix
matrix = np.arange(size * size).reshape(size, size)
result = onsite_projection(matrix, idx1, idx2)
# Check shape
assert result.shape == (len(idx1), len(idx2))
# Check values
expected = matrix[np.ix_(idx1, idx2)]
assert_array_almost_equal(result, expected)
@given(st.integers(min_value=2, max_value=5))
def test_build_hh_ss_hermiticity(size):
"""Test that built Hamiltonians maintain Hermiticity"""
from unittest.mock import MagicMock
# Create mock DFT Hamiltonian class
class MockDH:
def __init__(self, size):
self.no = size
self.n_s = 1
self.M11r = np.eye(size)
self.M11i = np.zeros((size, size))
self.M22r = np.eye(size)
self.M22i = np.zeros((size, size))
self.M12r = np.zeros((size, size))
self.M12i = np.zeros((size, size))
self.M21r = np.zeros((size, size))
self.M21i = np.zeros((size, size))
self.S_idx = np.eye(size)
self.lattice = MagicMock()
self.lattice.nsc.prod.return_value = 1
def tocsr(self, matrix):
return matrix
dh = MockDH(size)
hh, ss = build_hh_ss(dh)
# Check Hermiticity of Hamiltonian and overlap matrices
for h in hh:
assert_array_almost_equal(h, h.conj().T)
for s in ss:
assert_array_almost_equal(s, s.conj().T)
if __name__ == "__main__":
pytest.main([__file__])