You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
262 lines
7.7 KiB
262 lines
7.7 KiB
# Copyright (c) [2024] []
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
# of this software and associated documentation files (the "Software"), to deal
|
|
# in the Software without restriction, including without limitation the rights
|
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
# copies of the Software, and to permit persons to whom the Software is
|
|
# furnished to do so, subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be included in all
|
|
# copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
# SOFTWARE.
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from hypothesis import given
|
|
from hypothesis import strategies as st
|
|
from numpy.testing import assert_allclose, assert_array_almost_equal
|
|
|
|
from grogupy.constants import TAU_0, TAU_X, TAU_Y, TAU_Z
|
|
from grogupy.utilities import (
|
|
RotM,
|
|
RotMa2b,
|
|
crossM,
|
|
hsk,
|
|
int_de_ke,
|
|
make_contour,
|
|
make_kset,
|
|
read_siesta_emin,
|
|
tau_u,
|
|
)
|
|
|
|
|
|
# Test basic Pauli matrix properties
|
|
def test_pauli_matrices_properties():
|
|
"""Test fundamental properties of Pauli matrices"""
|
|
# Test anticommutation relations
|
|
assert_array_almost_equal(TAU_X @ TAU_Y + TAU_Y @ TAU_X, np.zeros((2, 2)))
|
|
assert_array_almost_equal(TAU_Y @ TAU_Z + TAU_Z @ TAU_Y, np.zeros((2, 2)))
|
|
assert_array_almost_equal(TAU_Z @ TAU_X + TAU_X @ TAU_Z, np.zeros((2, 2)))
|
|
|
|
# Test square of Pauli matrices equals identity
|
|
assert_array_almost_equal(TAU_X @ TAU_X, TAU_0)
|
|
assert_array_almost_equal(TAU_Y @ TAU_Y, TAU_0)
|
|
assert_array_almost_equal(TAU_Z @ TAU_Z, TAU_0)
|
|
|
|
# Test Hermiticity
|
|
assert_array_almost_equal(TAU_X, TAU_X.conj().T)
|
|
assert_array_almost_equal(TAU_Y, TAU_Y.conj().T)
|
|
assert_array_almost_equal(TAU_Z, TAU_Z.conj().T)
|
|
|
|
|
|
# Test hsk function
|
|
def test_hsk_basics():
|
|
"""Test basic properties of the hsk function"""
|
|
size = 4
|
|
H = np.random.random((3, size, size)) + 1j * np.random.random((3, size, size))
|
|
ss = np.random.random((3, size, size)) + 1j * np.random.random((3, size, size))
|
|
sc_off = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0]])
|
|
k = np.array([0.1, 0.2, 0.3])
|
|
|
|
HK, SK = hsk(H, ss, sc_off, k)
|
|
|
|
# Check shapes
|
|
assert HK.shape == (size, size)
|
|
assert SK.shape == (size, size)
|
|
|
|
# Test k=0 case gives the central cell contribution
|
|
HK0, SK0 = hsk(H, ss, sc_off, np.zeros(3))
|
|
assert_array_almost_equal(HK0, H[0])
|
|
assert_array_almost_equal(SK0, ss[0])
|
|
|
|
|
|
@given(st.integers(min_value=1, max_value=20))
|
|
def test_make_kset_dimensions(num_k):
|
|
"""Test k-point set generation with different dimensions"""
|
|
# Test 1D
|
|
kset_x = make_kset("x", num_k)
|
|
assert kset_x.shape[1] == 3
|
|
assert len(np.unique(kset_x[:, 1])) == 1 # y coordinates should be same
|
|
assert len(np.unique(kset_x[:, 2])) == 1 # z coordinates should be same
|
|
|
|
# Test 2D
|
|
kset_xy = make_kset("xy", num_k)
|
|
assert kset_xy.shape[1] == 3
|
|
assert len(np.unique(kset_xy[:, 2])) == 1 # z coordinates should be same
|
|
|
|
# Test 3D
|
|
kset_xyz = make_kset("xyz", num_k)
|
|
assert kset_xyz.shape[1] == 3
|
|
assert len(kset_xyz) == num_k**3
|
|
|
|
|
|
def test_make_contour():
|
|
"""Test contour generation for energy integration"""
|
|
emin = -20
|
|
emax = 0.0
|
|
enum = 42
|
|
p = 150
|
|
|
|
cont = make_contour(emin, emax, enum, p)
|
|
|
|
# Check attributes
|
|
assert hasattr(cont, "R")
|
|
assert hasattr(cont, "z0")
|
|
assert hasattr(cont, "ze")
|
|
assert hasattr(cont, "we")
|
|
assert hasattr(cont, "enum")
|
|
|
|
# Check dimensions
|
|
assert len(cont.ze) == enum
|
|
assert len(cont.we) == enum
|
|
|
|
# Check basic properties
|
|
assert cont.z0 == (emax + emin) / 2
|
|
assert cont.R == (emax - emin) / 2
|
|
assert cont.enum == enum
|
|
|
|
|
|
@given(st.lists(st.floats(min_value=-1, max_value=1), min_size=3, max_size=3))
|
|
def test_tau_u(u):
|
|
"""Test generation of Pauli matrix in arbitrary direction"""
|
|
u = np.array(u)
|
|
if np.all(u == 0):
|
|
u = np.array([1, 0, 0]) # Handle zero vector case
|
|
u = u / np.linalg.norm(u)
|
|
|
|
result = tau_u(u)
|
|
|
|
# Check result is 2x2
|
|
assert result.shape == (2, 2)
|
|
|
|
# Check Hermiticity
|
|
assert_array_almost_equal(result, result.conj().T)
|
|
|
|
# Check trace is zero
|
|
assert abs(np.trace(result)) < 1e-10
|
|
|
|
# Check square equals identity
|
|
assert_array_almost_equal(result @ result, np.eye(2))
|
|
|
|
|
|
def test_crossM():
|
|
"""Test cross product matrix generation"""
|
|
u = np.array([1.0, 2.0, 3.0])
|
|
v = np.array([4.0, 5.0, 6.0])
|
|
|
|
# Test that crossM(u) @ v equals np.cross(u, v)
|
|
assert_array_almost_equal(crossM(u) @ v, np.cross(u, v))
|
|
|
|
# Test antisymmetry
|
|
assert_array_almost_equal(crossM(u), -crossM(u).T)
|
|
|
|
|
|
@pytest.mark.parametrize("theta", [0, np.pi / 4, np.pi / 2, np.pi])
|
|
def test_RotM(theta):
|
|
"""Test rotation matrix generation"""
|
|
# Test rotation around z-axis
|
|
u = np.array([0, 0, 1])
|
|
R = RotM(theta, u)
|
|
|
|
# Check orthogonality
|
|
assert_array_almost_equal(R @ R.T, np.eye(3))
|
|
|
|
# Check determinant is 1
|
|
assert_allclose(np.linalg.det(R), 1.0)
|
|
|
|
# Test rotation of vector
|
|
v = np.array([1, 0, 0])
|
|
rotated_v = R @ v
|
|
expected_v = np.array([np.cos(theta), np.sin(theta), 0])
|
|
assert_array_almost_equal(rotated_v, expected_v)
|
|
|
|
|
|
def test_RotMa2b():
|
|
"""Test rotation matrix between two vectors"""
|
|
# Test simple cases
|
|
a = np.array([1, 0, 0])
|
|
b = np.array([0, 1, 0])
|
|
R = RotMa2b(a, b)
|
|
|
|
# Check that R rotates a to b
|
|
assert_array_almost_equal(R @ a, b)
|
|
|
|
# Check orthogonality
|
|
assert_array_almost_equal(R @ R.T, np.eye(3))
|
|
|
|
# Check determinant is 1
|
|
assert_allclose(np.linalg.det(R), 1.0)
|
|
|
|
|
|
def test_read_siesta_emin(tmpdir):
|
|
"""Test reading minimum energy from SIESTA .EIG file"""
|
|
# Create mock .EIG file
|
|
eig_file = tmpdir / "test.EIG"
|
|
with open(eig_file, "w") as f:
|
|
# Write mock eigenvalues
|
|
f.write("1.0 2.0 3.0\n-1.0 0.0 1.0\n")
|
|
|
|
# Test reading minimum energy
|
|
emin = read_siesta_emin(str(eig_file))
|
|
assert emin == -1.0
|
|
|
|
|
|
def test_int_de_ke():
|
|
"""Test energy integral calculation"""
|
|
# Create test data
|
|
energy = np.linspace(-10, 10, 1000)
|
|
traced = np.exp(-(energy**2)) # Gaussian function
|
|
we = np.ones_like(energy) # Unit weights
|
|
|
|
result = int_de_ke(traced, we)
|
|
|
|
# Result should be real for real input
|
|
assert np.imag(result) < 1e-10
|
|
|
|
# Test with complex input
|
|
traced_complex = traced + 1j * traced
|
|
result_complex = int_de_ke(traced_complex, we)
|
|
assert isinstance(result_complex, complex)
|
|
|
|
|
|
# Property-based tests
|
|
@given(st.integers(min_value=2, max_value=10))
|
|
def test_make_kset_dimensions_property(num_k):
|
|
"""Property-based test for k-point set generation"""
|
|
kset = make_kset("xyz", num_k)
|
|
|
|
# All k-points should be in [0,1)
|
|
assert np.all(kset >= 0)
|
|
assert np.all(kset < 1)
|
|
|
|
# Shape should be (num_k^3, 3)
|
|
assert kset.shape == (num_k**3, 3)
|
|
|
|
|
|
@given(
|
|
st.floats(min_value=-20, max_value=-1),
|
|
st.floats(min_value=0, max_value=1),
|
|
st.integers(min_value=10, max_value=100),
|
|
)
|
|
def test_make_contour_properties(emin, emax, enum):
|
|
"""Property-based test for contour generation"""
|
|
cont = make_contour(emin, emax, enum, 150)
|
|
|
|
# Check basic properties
|
|
assert len(cont.ze) == enum
|
|
assert len(cont.we) == enum
|
|
assert cont.R > 0
|
|
assert cont.z0 == (emax + emin) / 2
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main([__file__])
|