You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
172 lines
5.5 KiB
172 lines
5.5 KiB
# Copyright (c) [2024] []
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
# of this software and associated documentation files (the "Software"), to deal
|
|
# in the Software without restriction, including without limitation the rights
|
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
# copies of the Software, and to permit persons to whom the Software is
|
|
# furnished to do so, subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be included in all
|
|
# copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
# SOFTWARE.
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from hypothesis import given
|
|
from hypothesis import strategies as st
|
|
from numpy.testing import assert_array_almost_equal
|
|
|
|
from grogupy.core import (
|
|
build_hh_ss,
|
|
calc_Vu,
|
|
commutator,
|
|
onsite_projection,
|
|
parallel_Gk,
|
|
sequential_GK,
|
|
)
|
|
|
|
|
|
# Helper function to generate complex arrays
|
|
def complex_arrays(shape):
|
|
return st.complex_numbers(
|
|
min_magnitude=0.0, max_magnitude=1e6, allow_infinity=False, allow_nan=False
|
|
).map(lambda x: np.full(shape, x))
|
|
|
|
|
|
# Test commutator function
|
|
def test_commutator_hermitian():
|
|
"""Test that commutator of Hermitian matrices is anti-Hermitian"""
|
|
a = np.array([[1, 1j], [-1j, 2]], dtype=np.complex128)
|
|
b = np.array([[3, -2j], [2j, 4]], dtype=np.complex128)
|
|
|
|
result = commutator(a, b)
|
|
|
|
# For Hermitian matrices, commutator should be anti-Hermitian
|
|
assert_array_almost_equal(result, -result.conj().T)
|
|
|
|
|
|
@given(st.integers(min_value=2, max_value=10))
|
|
def test_commutator_zero_identity(n):
|
|
"""Test that commutator of identity matrix with any matrix is zero"""
|
|
# Create random complex matrix
|
|
rng = np.random.default_rng(42)
|
|
a = rng.random((n, n)) + 1j * rng.random((n, n))
|
|
identity = np.eye(n)
|
|
|
|
result = commutator(a, identity)
|
|
|
|
assert_array_almost_equal(result, np.zeros_like(result))
|
|
|
|
|
|
# Test parallel_Gk and sequential_GK implementations
|
|
@pytest.mark.parametrize("size", [2, 4, 8])
|
|
def test_green_function_implementations_match(size):
|
|
"""Test that parallel and sequential Green's function calculations match"""
|
|
rng = np.random.default_rng(42)
|
|
|
|
# Generate test inputs
|
|
HK = rng.random((size, size)) + 1j * rng.random((size, size))
|
|
HK = (HK + HK.conj().T) / 2 # Make Hermitian
|
|
SK = np.eye(size) + 0.1 * (rng.random((size, size)) + 1j * rng.random((size, size)))
|
|
SK = (SK + SK.conj().T) / 2 # Make Hermitian
|
|
eran = rng.random(5) + 1j * rng.random(5)
|
|
eset = len(eran)
|
|
|
|
# Calculate using both methods
|
|
G_parallel = parallel_Gk(HK, SK, eran, eset)
|
|
G_sequential = sequential_GK(HK, SK, eran, eset)
|
|
|
|
assert_array_almost_equal(G_parallel, G_sequential)
|
|
|
|
|
|
# Test calc_Vu function
|
|
def test_calc_Vu_hermiticity():
|
|
"""Test that Vu1 and Vu2 maintain expected Hermiticity properties"""
|
|
rng = np.random.default_rng(42)
|
|
size = 4
|
|
|
|
# Create Hermitian Hamiltonian
|
|
H = rng.random((size, size)) + 1j * rng.random((size, size))
|
|
H = (H + H.conj().T) / 2
|
|
|
|
# Create unitary rotation matrix
|
|
Tu = rng.random((size, size)) + 1j * rng.random((size, size))
|
|
Tu = (Tu + Tu.conj().T) / 2
|
|
|
|
Vu1, Vu2 = calc_Vu(H, Tu)
|
|
|
|
# Vu1 should be anti-Hermitian (from commutator properties)
|
|
assert_array_almost_equal(Vu1, -Vu1.conj().T)
|
|
|
|
# Vu2 should be Hermitian
|
|
assert_array_almost_equal(Vu2, Vu2.conj().T)
|
|
|
|
|
|
# Test onsite_projection function
|
|
def test_onsite_projection():
|
|
"""Test basic properties of onsite projection"""
|
|
size = 4
|
|
idx1 = np.array([0, 1])
|
|
idx2 = np.array([2, 3])
|
|
|
|
# Create test matrix
|
|
matrix = np.arange(size * size).reshape(size, size)
|
|
|
|
result = onsite_projection(matrix, idx1, idx2)
|
|
|
|
# Check shape
|
|
assert result.shape == (len(idx1), len(idx2))
|
|
|
|
# Check values
|
|
expected = matrix[np.ix_(idx1, idx2)]
|
|
assert_array_almost_equal(result, expected)
|
|
|
|
|
|
@given(st.integers(min_value=2, max_value=5))
|
|
def test_build_hh_ss_hermiticity(size):
|
|
"""Test that built Hamiltonians maintain Hermiticity"""
|
|
from unittest.mock import MagicMock
|
|
|
|
# Create mock DFT Hamiltonian class
|
|
class MockDH:
|
|
def __init__(self, size):
|
|
self.no = size
|
|
self.n_s = 1
|
|
self.M11r = np.eye(size)
|
|
self.M11i = np.zeros((size, size))
|
|
self.M22r = np.eye(size)
|
|
self.M22i = np.zeros((size, size))
|
|
self.M12r = np.zeros((size, size))
|
|
self.M12i = np.zeros((size, size))
|
|
self.M21r = np.zeros((size, size))
|
|
self.M21i = np.zeros((size, size))
|
|
self.S_idx = np.eye(size)
|
|
|
|
self.lattice = MagicMock()
|
|
self.lattice.nsc.prod.return_value = 1
|
|
|
|
def tocsr(self, matrix):
|
|
return matrix
|
|
|
|
dh = MockDH(size)
|
|
hh, ss = build_hh_ss(dh)
|
|
|
|
# Check Hermiticity of Hamiltonian and overlap matrices
|
|
for h in hh:
|
|
assert_array_almost_equal(h, h.conj().T)
|
|
|
|
for s in ss:
|
|
assert_array_almost_equal(s, s.conj().T)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main([__file__])
|