You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

298 lines
9.9 KiB

# Copyright (c) [2024] []
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import numpy as np
from numpy.linalg import inv
from grogupy.utils import blow_up_orbindx, commutator, parse_magnetic_entity
def parallel_Gk(HK, SK, eran, eset):
return inv(SK * eran.reshape(eset, 1, 1) - HK)
def sequential_GK(HK, SK, eran, eset):
Gk = np.zeros(shape=(eset, HK.shape[0], HK.shape[1]), dtype="complex128")
for j in range(eset):
Gk[j] = inv(SK * eran[j] - HK)
return Gk
def calc_Vu(H, Tu):
"""_summary_
Args:
H (_type_): _description_
Tu (_type_): _description_
Returns:
_type_: _description_
"""
Vu1 = 1j / 2 * commutator(H, Tu) # equation 100
Vu2 = 1 / 8 * commutator(commutator(Tu, H), Tu) # equation 100
return Vu1, Vu2
def remove_clutter_for_save(pairs, magnetic_entities):
"""_summary_
Args:
pairs (_type_): _description_
magnetic_entities (_type_): _description_
Returns:
_type_: _description_
"""
# remove clutter from magnetic entities and pair information
for pair in pairs:
del pair["Gij"]
del pair["Gij_tmp"]
del pair["Gji"]
del pair["Gji_tmp"]
for mag_ent in magnetic_entities:
del mag_ent["Gii"]
del mag_ent["Gii_tmp"]
del mag_ent["Vu1"]
del mag_ent["Vu2"]
return pairs, magnetic_entities
def build_hh_ss(dh):
"""_summary_
Args:
dh (_type_): _description_
Returns:
_type_: _description_
"""
NO = dh.no # shorthand for number of orbitals in the unit cell
# preprocessing Hamiltonian and overlap matrix elements
h11 = dh.tocsr(dh.M11r)
h11 += dh.tocsr(dh.M11i) * 1.0j
h11 = h11.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
h22 = dh.tocsr(dh.M22r)
h22 += dh.tocsr(dh.M22i) * 1.0j
h22 = h22.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
h12 = dh.tocsr(dh.M12r)
h12 += dh.tocsr(dh.M12i) * 1.0j
h12 = h12.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
h21 = dh.tocsr(dh.M21r)
h21 += dh.tocsr(dh.M21i) * 1.0j
h21 = h21.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
sov = (
dh.tocsr(dh.S_idx)
.toarray()
.reshape(NO, dh.n_s, NO)
.transpose(0, 2, 1)
.astype("complex128")
)
# Reorganization of Hamiltonian and overlap matrix elements to SPIN BOX representation
U = np.vstack(
[np.kron(np.eye(NO, dtype=int), [1, 0]), np.kron(np.eye(NO, dtype=int), [0, 1])]
)
# This is the permutation that transforms ud1ud2 to u12d12
# That is this transforms FROM SPIN BOX to ORBITAL BOX => U
# the inverse transformation is U.T u12d12 to ud1ud2
# That is FROM ORBITAL BOX to SPIN BOX => U.T
# From now on everything is in SPIN BOX!!
hh, ss = np.array(
[
U.T
@ np.block([[h11[:, :, i], h12[:, :, i]], [h21[:, :, i], h22[:, :, i]]])
@ U
for i in range(dh.lattice.nsc.prod())
]
), np.array(
[
U.T
@ np.block(
[[sov[:, :, i], sov[:, :, i] * 0], [sov[:, :, i] * 0, sov[:, :, i]]]
)
@ U
for i in range(dh.lattice.nsc.prod())
]
)
return hh, ss, NO
def setup_pairs_and_magnetic_entities(
magnetic_entities, pairs, dh, simulation_parameters
):
"""_summary_
Args:
magnetic_entities (_type_): _description_
pairs (_type_): _description_
dh (_type_): _description_
simulation_parameters (_type_): _description_
Returns:
_type_: _description_
"""
# for every site we have to store 3 Greens function (and the associated _tmp-s) in the 3 reference directions
for mag_ent in magnetic_entities:
parsed = parse_magnetic_entity(dh, **mag_ent) # parse orbital indexes
2 months ago
mag_ent["orbital_indices"] = parsed
mag_ent["spin_box_indices"] = blow_up_orbindx(
parsed
) # calculate spin box indexes
# if orbital is not set use all
if "l" not in mag_ent.keys():
mag_ent["l"] = "all"
if isinstance(mag_ent["atom"], int):
mag_ent["tags"] = [
f"[{mag_ent['atom']}]{dh.atoms[mag_ent['atom']].tag}({mag_ent['l']})"
]
mag_ent["xyz"] = [dh.xyz[mag_ent["atom"]]]
if isinstance(mag_ent["atom"], list):
mag_ent["tags"] = []
mag_ent["xyz"] = []
# iterate over atoms
for atom_idx in mag_ent["atom"]:
mag_ent["tags"].append(
f"[{atom_idx}]{dh.atoms[atom_idx].tag}({mag_ent['l']})"
)
mag_ent["xyz"].append(dh.xyz[atom_idx])
# calculate size for Greens function generation
2 months ago
spin_box_shape = len(mag_ent["spin_box_indices"])
mag_ent["energies"] = (
[]
) # we will store the second order energy derivations here
# These will be the perturbed potentials from eq. 100
mag_ent["Vu1"] = [] # so they are independent in memory
mag_ent["Vu2"] = []
mag_ent["Gii"] = [] # Greens function
mag_ent["Gii_tmp"] = [] # Greens function for parallelization
for i in simulation_parameters["ref_xcf_orientations"]:
# Rotations for every quantization axis
mag_ent["Vu1"].append([])
mag_ent["Vu2"].append([])
# Greens functions for every quantization axis
mag_ent["Gii"].append(
np.zeros(
(simulation_parameters["eset"], spin_box_shape, spin_box_shape),
dtype="complex128",
)
)
mag_ent["Gii_tmp"].append(
np.zeros(
(simulation_parameters["eset"], spin_box_shape, spin_box_shape),
dtype="complex128",
)
)
# for every site we have to store 2x3 Greens function (and the associated _tmp-s)
# in the 3 reference directions, because G_ij and G_ji are both needed
for pair in pairs:
# calculate distance
xyz_ai = magnetic_entities[pair["ai"]]["xyz"]
xyz_aj = magnetic_entities[pair["aj"]]["xyz"]
xyz_aj = xyz_aj + pair["Ruc"] @ simulation_parameters["cell"]
pair["dist"] = np.linalg.norm(xyz_ai - xyz_aj)
# calculate size for Greens function generation
2 months ago
spin_box_shape_i = len(magnetic_entities[pair["ai"]]["spin_box_indices"])
spin_box_shape_j = len(magnetic_entities[pair["aj"]]["spin_box_indices"])
pair["tags"] = []
for mag_ent in [magnetic_entities[pair["ai"]], magnetic_entities[pair["aj"]]]:
tag = ""
# get atoms of magnetic entity
atoms_idx = mag_ent["atom"]
orbitals = mag_ent["l"]
# if magnetic entity contains one atoms
if isinstance(atoms_idx, int):
tag += f"[{atoms_idx}]{dh.atoms[atoms_idx].tag}({orbitals})"
# if magnetic entity contains more than one atoms
if isinstance(atoms_idx, list):
# iterate over atoms
atom_group = "{"
for atom_idx in atoms_idx:
atom_group += f"[{atom_idx}]{dh.atoms[atom_idx].tag}({orbitals})--"
# end {} of the atoms in the magnetic entity
tag += atom_group[:-2] + "}"
pair["tags"].append(tag)
pair["energies"] = [] # we will store the second order energy derivations here
pair["Gij"] = [] # Greens function
pair["Gji"] = []
pair["Gij_tmp"] = [] # Greens function for parallelization
pair["Gji_tmp"] = []
for i in simulation_parameters["ref_xcf_orientations"]:
# Greens functions for every quantization axis
pair["Gij"].append(
np.zeros(
(simulation_parameters["eset"], spin_box_shape_i, spin_box_shape_j),
dtype="complex128",
)
)
pair["Gij_tmp"].append(
np.zeros(
(simulation_parameters["eset"], spin_box_shape_i, spin_box_shape_j),
dtype="complex128",
)
)
pair["Gji"].append(
np.zeros(
(simulation_parameters["eset"], spin_box_shape_j, spin_box_shape_i),
dtype="complex128",
)
)
pair["Gji_tmp"].append(
np.zeros(
(simulation_parameters["eset"], spin_box_shape_j, spin_box_shape_i),
dtype="complex128",
)
)
return pairs, magnetic_entities
2 months ago
def onsite_projection(matrix, idx1, idx2):
"""_summary_
Args:
matrix (_type_): _description_
idx (_type_): _description_
Returns:
_type_: _description_
"""
return matrix[..., idx1, :][..., idx2]