You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

316 lines
13 KiB

# Copyright (c) [2024] []
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from argparse import ArgumentParser
from pickle import dump, load
import numpy as np
default_args = dict(
infile=None,
outfile=None,
scf_xcf_orientation=np.array([0, 0, 1]),
ref_xcf_orientations=[
dict(o=np.array([1, 0, 0]), vw=[np.array([0, 1, 0]), np.array([0, 0, 1])]),
dict(o=np.array([0, 1, 0]), vw=[np.array([1, 0, 0]), np.array([0, 0, 1])]),
dict(o=np.array([0, 0, 1]), vw=[np.array([1, 0, 0]), np.array([0, 1, 0])]),
],
kset=2,
kdirs="xyz",
ebot=None,
eset=42,
esetp=1000,
parallel_solver_for_Gk=False,
padawan_mode=True,
)
# parser = ArgumentParser()
# parser.add_argument('--input' , dest = 'infile' , default=None , help = 'Input file name')
# parser.add_argument('--output' , dest = 'outfile', default=None , help = 'Output file name')
# parser.add_argument('--kset' , dest = 'kset' , default = 2 , type=int , help = 'k-space resolution of Jij calculation')
# parser.add_argument('--kdirs' , dest = 'kdirs' , default = 'xyz' , help = 'Definition of k-space dimensionality')
# parser.add_argument('--ebot' , dest = 'ebot' , default = None , type=float, help = 'Bottom energy of the contour')
# parser.add_argument('--eset' , dest = 'eset' , default = 42 , type=int , help = 'Number of energy points on the contour')
# parser.add_argument('--eset-p' , dest = 'esetp' , default = 1000 , type=int , help = 'Parameter tuning the distribution on the contour')
# cmd_line_args = parser.parse_args()
def save_pickle(outfile, data):
"""Saves the data in the outfile with pickle.
Args:
outfile : str
Path to outfile
data : dict
Contains the data
"""
# save dictionary
with open(outfile, "wb") as output_file:
dump(data, output_file)
def load_pickle(infile):
"""Loads the data from the infile with pickle.
Args:
infile : str
Path to infile
Returns:
data : dict
A dictionary of data
"""
# open and read file
with open(infile, "wb") as input_file:
data = load(data, input_file)
return data
def print_parameters(simulation_parameters):
"""It prints the simulation parameters for the grogu out.
Args:
simulation_parameters : dict
It contains the simulations parameters
"""
print(
"================================================================================================================================================================"
)
print("Input file: ")
print(simulation_parameters["infile"])
print("Output file: ")
print(simulation_parameters["outfile"])
print(
"Number of nodes in the parallel cluster: ",
simulation_parameters["parallel_size"],
)
print(
"================================================================================================================================================================"
)
print("Cell [Ang]: ")
print(simulation_parameters["cell"])
print(
"================================================================================================================================================================"
)
print("DFT axis: ")
print(simulation_parameters["scf_xcf_orientation"])
print("Quantization axis and perpendicular rotation directions:")
for ref in simulation_parameters["ref_xcf_orientations"]:
print(ref["o"], " --» ", ref["vw"])
print(
"================================================================================================================================================================"
)
print("Parameters for the contour integral:")
print("Number of k points: ", simulation_parameters["kset"])
print("k point directions: ", simulation_parameters["kdirs"])
print("Ebot: ", simulation_parameters["ebot"])
print("Eset: ", simulation_parameters["eset"])
print("Esetp: ", simulation_parameters["esetp"])
print(
"================================================================================================================================================================"
)
def print_atoms_and_pairs(magnetic_entities, pairs):
"""It prints the pair and magnetic entity information for the grogu out.
Args:
magnetic_entities : dict
It contains the data on the magnetic entities
pairs : dict
It contains the data on the pairs
"""
print("Atomic information: ")
print(
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
)
print(
"[atom index]Element(orbitals) x [Ang] y [Ang] z [Ang] Sx Sy Sz Q Lx Ly Lz Jx Jy Jz"
)
print(
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
)
# iterate over magnetic entities
for mag_ent in magnetic_entities:
# iterate over atoms
for tag, xyz in zip(mag_ent["tags"], mag_ent["xyz"]):
# coordinates and tag
print(f"{tag} {xyz[0]} {xyz[1]} {xyz[2]}")
print("")
print(
"================================================================================================================================================================"
)
print("Anisotropy [meV]")
print(
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
)
print("Magnetic entity x [Ang] y [Ang] z [Ang]")
print(
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
)
# iterate over magnetic entities
for mag_ent in magnetic_entities:
# iterate over atoms
for tag, xyz in zip(mag_ent["tags"], mag_ent["xyz"]):
# coordinates and tag
print(f"{tag} {xyz[0]} {xyz[1]} {xyz[2]}")
print("Consistency check: ", mag_ent["K_consistency"])
print("Anisotropy diag: ", mag_ent["K"])
print("")
print(
"================================================================================================================================================================"
)
print("Exchange [meV]")
print(
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
)
print("Magnetic entity1 Magnetic entity2 [i j k] d [Ang]")
print(
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
)
# iterate over pairs
for pair in pairs:
# print pair parameters
print(
f"{pair['tags'][0]} {pair['tags'][1]} {pair['Ruc']} d [Ang] {pair['dist']}"
)
# print magnetic parameters
print("Isotropic: ", pair["J_iso"], " # Tr[J] / 3")
print("")
print("DMI: ", pair["D"], " # Dx, Dy, Dz")
print("")
print(
"Symmetric-anisotropy: ",
pair["J_S"],
" # J_S = J - J_iso * I > Jxx, Jyy, Jxy, Jxz, Jyz",
)
print("")
print("J: # Jxx, Jxy, Jxz, Jyx, Jyy, Jyz, Jzx, Jzy, Jzz")
print(pair["J"])
print(
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
)
print(
"================================================================================================================================================================"
)
def print_runtime_information(times):
"""It prints the runtime information for the grogu out.
Args:
times : dict
It contains the runtime data
"""
print("Runtime information: ")
print(f"Total runtime: {times['end_time'] - times['start_time']} s")
print(
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
)
print(f"Initial setup: {times['setup_time'] - times['start_time']} s")
print(
f"Hamiltonian conversion and XC field extraction: {times['H_and_XCF_time'] - times['setup_time']:.3f} s"
)
print(
f"Pair and site datastructure creatrions: {times['site_and_pair_dictionaries_time'] - times['H_and_XCF_time']:.3f} s"
)
print(
f"k set cration and distribution: {times['k_set_time'] - times['site_and_pair_dictionaries_time']:.3f} s"
)
print(
f"Rotating XC potential: {times['reference_rotations_time'] - times['k_set_time']:.3f} s"
)
print(
f"Greens function inversion: {times['green_function_inversion_time'] - times['reference_rotations_time']:.3f} s"
)
print(
f"Calculate energies and magnetic components: {times['end_time'] - times['green_function_inversion_time']:.3f} s"
)
def print_job_description(simulation_parameters):
"""It prints the parameters and the description of the job.
Args:
simulation_parameters : dict
It contains the simulations parameters
"""
print(
"================================================================================================================================================================"
)
print("Input file: ")
print(simulation_parameters["infile"])
print("Output file: ")
print(simulation_parameters["outfile"])
print(
"Number of nodes in the parallel cluster: ",
simulation_parameters["parallel_size"],
)
if simulation_parameters["parallel_solver_for_Gk"]:
print("solver used for Greens function calculation: parallel")
else:
print("solver used for Greens function calculation: sequential")
print(
"================================================================================================================================================================"
)
print("Cell [Ang]: ")
print(simulation_parameters["cell"])
print(
"================================================================================================================================================================"
)
print("DFT axis: ")
print(simulation_parameters["scf_xcf_orientation"])
print("Quantization axis and perpendicular rotation directions:")
for ref in simulation_parameters["ref_xcf_orientations"]:
print(ref["o"], " --» ", ref["vw"])
print(
"================================================================================================================================================================"
)
print("Parameters for the contour integral:")
print("Number of k points: ", simulation_parameters["kset"])
print("k point directions: ", simulation_parameters["kdirs"])
if simulation_parameters["automatic_ebot"]:
print(
"Ebot: ",
simulation_parameters["ebot"],
" WARNING: This was automatically determined!",
)
else:
print("Ebot: ", simulation_parameters["ebot"])
print("Eset: ", simulation_parameters["eset"])
print("Esetp: ", simulation_parameters["esetp"])
print(
"================================================================================================================================================================"
)