You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

467 lines
18 KiB

# Copyright (c) [2024] []
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""Docstring in io.
"""
from pickle import dump, load
from typing import Final
import numpy as np
from sisl.io import fdfSileSiesta
from grogupy.constants import ACCEPTED_INPUTS
def read_grogupy_fdf(path: str) -> tuple[dict, list, list]:
"""It reads the simulation parameters, magnetic entities and pairs from the fdf.
Args:
path : string
The path to the .fdf file
Returns:
fdf_arguments : dict
The read input arguments from the fdf file
magnetic_entities : list
It contains the dictionaries associated with the magnetic entities
pairs : dict
It contains the dictionaries associated with the pair information
"""
# read fdf file
fdf = fdfSileSiesta(path)
fdf_arguments = dict()
InputFile = fdf.get("InputFile")
if InputFile is not None:
fdf_arguments["infile"] = InputFile
OutputFile = fdf.get("OutputFile")
if OutputFile is not None:
fdf_arguments["outfile"] = OutputFile
ScfXcfOrientation = fdf.get("ScfXcfOrientation")
if ScfXcfOrientation is not None:
fdf_arguments["scf_xcf_orientation"] = np.array(
ScfXcfOrientation.split()[:3], dtype=float
)
XCF_Rotation = fdf.get("XCF_Rotation")
if XCF_Rotation is not None:
rotations = []
# iterate over rows
for rot in XCF_Rotation:
# convert row to dictionary
dat = np.array(rot.split()[:9], dtype=float)
o = dat[:3]
vw = dat[3:].reshape(2, 3)
rotations.append(dict(o=o, vw=vw))
fdf_arguments["ref_xcf_orientations"] = rotations
Kset = fdf.get("INTEGRAL.Kset")
if Kset is not None:
fdf_arguments["kset"] = int(Kset)
Kdirs = fdf.get("INTEGRAL.Kdirs")
if Kdirs is not None:
fdf_arguments["kdirs"] = Kdirs
# This is permitted because it means automatic Ebot definition
ebot = fdf.get("INTEGRAL.Ebot")
try:
fdf_arguments["ebot"] = float(ebot)
except:
fdf_arguments["ebot"] = None
Eset = fdf.get("INTEGRAL.Eset")
if Eset is not None:
fdf_arguments["eset"] = int(Eset)
Esetp = fdf.get("INTEGRAL.Esetp")
if Esetp is not None:
fdf_arguments["esetp"] = float(Esetp)
ParallelSolver = fdf.get("GREEN.ParallelSolver")
if ParallelSolver is not None:
fdf_arguments["parallel_solver_for_Gk"] = bool(ParallelSolver)
PadawanMode = fdf.get("PadawanMode")
if PadawanMode is not None:
fdf_arguments["padawan_mode"] = bool(PadawanMode)
Pairs = fdf.get("Pairs")
if Pairs is not None:
pairs = []
# iterate over rows
for fdf_pair in Pairs:
# convert data
dat = np.array(fdf_pair.split()[:5], dtype=int)
# create pair dictionary
my_pair = dict(ai=dat[0], aj=dat[1], Ruc=np.array(dat[2:]))
pairs.append(my_pair)
MagneticEntities = fdf.get("MagneticEntities")
if MagneticEntities is not None:
magnetic_entities = []
# iterate over magnetic entities
for mag_ent in MagneticEntities:
# drop comments from data
row = mag_ent.split()
dat = []
for string in row:
if string.find("#") != -1:
break
dat.append(string)
# cluster input
if dat[0] in {"Cluster", "cluster"}:
magnetic_entities.append(dict(atom=[int(_) for _ in dat[1:]]))
continue
# atom input, same as cluster, but raises
# error when multiple atoms are given
if dat[0] in {"Atom", "atom"}:
if len(dat) > 2:
raise Exception("Atom input must be a single integer")
magnetic_entities.append(dict(atom=int(dat[1])))
continue
# atom and shell information
elif dat[0] in {"AtomShell", "Atomshell", "atomShell", "atomshell"}:
magnetic_entities.append(
dict(atom=int(dat[1]), l=[int(_) for _ in dat[2:]])
)
continue
# atom and orbital information
elif dat[0] in {"AtomOrbital", "Atomorbital", "tomOrbital", "atomorbital"}:
magnetic_entities.append(
dict(atom=int(dat[1]), orb=[int(_) for _ in dat[2:]])
)
continue
# orbital information
elif dat[0] in {"Orbitals", "orbitals"}:
magnetic_entities.append(dict(orb=[int(_) for _ in dat[1:]]))
continue
else:
raise Exception("Unrecognizable magnetic entity in .fdf!")
return fdf_arguments, magnetic_entities, pairs
def process_input_args(
DEFAULT_ARGUMENTS: dict,
fdf_arguments: dict,
command_line_arguments: dict,
accepted_inputs: dict = ACCEPTED_INPUTS,
) -> dict:
"""It returns the final simulation parameters based on the inputs.
The merging is done in the order of priority:
1. command line arguments
2. fdf arguments
3. default arguments
Args:
default_arguments : dict
Default arguments from grogupy
fdf_arguments : dict
Arguments read from the fdf input file
command_line_arguments : dict
Arguments from the command line
Returns:
dict
The final simulation parameters
"""
# copy input so it does not get changed
default_arguments = DEFAULT_ARGUMENTS.copy()
# iterate over fdf_arguments and update default arguments
for key, value in fdf_arguments.items():
if value is not None and key in accepted_inputs:
default_arguments[key] = value
# iterate over command_line_arguments and update default arguments
for key, value in command_line_arguments.items():
if value is not None and key in accepted_inputs:
default_arguments[key] = value
return default_arguments
def save_pickle(outfile: str, data: dict) -> None:
"""Saves the data in the outfile with pickle.
Args:
outfile : str
Path to outfile
data : dict
Contains the data
"""
# save dictionary
with open(outfile, "wb") as output_file:
dump(data, output_file)
def load_pickle(infile: str) -> dict:
"""Loads the data from the infile with pickle.
Args:
infile : str
Path to infile
Returns:
data : dict
A dictionary of data
"""
# open and read file
with open(infile, "rb") as input_file:
data = load(input_file)
return data
def print_job_description(simulation_parameters: dict) -> None:
"""It prints the parameters and the description of the job.
Args:
simulation_parameters : dict
It contains the simulations parameters
"""
print(
"================================================================================================================================================================"
)
print("Input file: ")
print(simulation_parameters["infile"])
print("Output file: ")
print(simulation_parameters["outfile"])
print(
"Number of nodes in the parallel cluster: ",
simulation_parameters["parallel_size"],
)
if simulation_parameters["parallel_solver_for_Gk"]:
print("solver used for Greens function calculation: parallel")
else:
print("solver used for Greens function calculation: sequential")
print(
"================================================================================================================================================================"
)
print("Cell [Ang]: ")
print(simulation_parameters["cell"])
print(
"================================================================================================================================================================"
)
print("DFT axis: ")
print(simulation_parameters["scf_xcf_orientation"])
print("Quantization axis and perpendicular rotation directions:")
for ref in simulation_parameters["ref_xcf_orientations"]:
print(ref["o"], " --» ", ref["vw"])
print(
"================================================================================================================================================================"
)
print("Parameters for the contour integral:")
print("Number of k points: ", simulation_parameters["kset"])
print("k point directions: ", simulation_parameters["kdirs"])
if simulation_parameters["automatic_ebot"]:
print(
"Ebot: ",
simulation_parameters["ebot"],
" WARNING: This was automatically determined!",
)
else:
print("Ebot: ", simulation_parameters["ebot"])
print("Eset: ", simulation_parameters["eset"])
print("Esetp: ", simulation_parameters["esetp"])
print(
"================================================================================================================================================================"
)
def print_parameters(simulation_parameters: dict) -> None:
"""It prints the simulation parameters for the grogu out.
Args:
simulation_parameters : dict
It contains the simulations parameters
"""
print(
"================================================================================================================================================================"
)
print("Input file: ")
print(simulation_parameters["infile"])
print("Output file: ")
print(simulation_parameters["outfile"])
print(
"Number of nodes in the parallel cluster: ",
simulation_parameters["parallel_size"],
)
print(
"================================================================================================================================================================"
)
print("Cell [Ang]: ")
print(simulation_parameters["cell"])
print(
"================================================================================================================================================================"
)
print("DFT axis: ")
print(simulation_parameters["scf_xcf_orientation"])
print("Quantization axis and perpendicular rotation directions:")
for ref in simulation_parameters["ref_xcf_orientations"]:
print(ref["o"], " --» ", ref["vw"])
print(
"================================================================================================================================================================"
)
print("Parameters for the contour integral:")
print("Number of k points: ", simulation_parameters["kset"])
print("k point directions: ", simulation_parameters["kdirs"])
print("Ebot: ", simulation_parameters["ebot"])
print("Eset: ", simulation_parameters["eset"])
print("Esetp: ", simulation_parameters["esetp"])
print(
"================================================================================================================================================================"
)
def print_atoms_and_pairs(magnetic_entities: list, pairs: list) -> None:
"""It prints the pair and magnetic entity information for the grogu out.
Args:
magnetic_entities : dict
It contains the data on the magnetic entities
pairs : dict
It contains the data on the pairs
"""
print("Atomic information: ")
print(
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
)
print(
"[atom index]Element(orbitals) x [Ang] y [Ang] z [Ang] Sx Sy Sz Q Lx Ly Lz Jx Jy Jz"
)
print(
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
)
# iterate over magnetic entities
for mag_ent in magnetic_entities:
# iterate over atoms
for tag, xyz in zip(mag_ent["tags"], mag_ent["xyz"]):
# coordinates and tag
print(f"{tag} {xyz[0]} {xyz[1]} {xyz[2]}")
print("")
print(
"================================================================================================================================================================"
)
print("Anisotropy [meV]")
print(
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
)
print("Magnetic entity x [Ang] y [Ang] z [Ang]")
print(
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
)
# iterate over magnetic entities
for mag_ent in magnetic_entities:
# iterate over atoms
for tag, xyz in zip(mag_ent["tags"], mag_ent["xyz"]):
# coordinates and tag
print(f"{tag} {xyz[0]} {xyz[1]} {xyz[2]}")
print("Consistency check: ", mag_ent["K_consistency"])
print("K: # Kxx, Kxy, Kxz, Kyx, Kyy, Kyz, Kzx, Kzy, Kzz")
print(mag_ent["K"])
print("")
print(
"================================================================================================================================================================"
)
print("Exchange [meV]")
print(
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
)
print("Magnetic entity1 Magnetic entity2 [i j k] d [Ang]")
print(
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
)
# iterate over pairs
for pair in pairs:
# print pair parameters
print(
f"{pair['tags'][0]} {pair['tags'][1]} {pair['Ruc']} d [Ang] {pair['dist']}"
)
# print magnetic parameters
print("Isotropic: ", pair["J_iso"], " # Tr[J] / 3")
print("")
print("DMI: ", pair["D"], " # Dx, Dy, Dz")
print("")
print(
"Symmetric-anisotropy: ",
pair["J_S"],
" # J_S = J - J_iso * I > Jxx, Jyy, Jxy, Jxz, Jyz",
)
print("")
print("J: # Jxx, Jxy, Jxz, Jyx, Jyy, Jyz, Jzx, Jzy, Jzz")
print(pair["J"])
print(
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
)
print(
"================================================================================================================================================================"
)
def print_runtime_information(times: dict) -> None:
"""It prints the runtime information for the grogu out.
Args:
times : dict
It contains the runtime data
"""
print("Runtime information: ")
print(f"Total runtime: {times['end_time'] - times['start_time']} s")
print(
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
)
print(f"Initial setup: {times['setup_time'] - times['start_time']} s")
print(
f"Hamiltonian conversion and XC field extraction: {times['H_and_XCF_time'] - times['setup_time']:.3f} s"
)
print(
f"Pair and site datastructures creations: {times['site_and_pair_dictionaries_time'] - times['H_and_XCF_time']:.3f} s"
)
print(
f"k set creation and distribution: {times['k_set_time'] - times['site_and_pair_dictionaries_time']:.3f} s"
)
print(
f"Rotating XC potential: {times['reference_rotations_time'] - times['k_set_time']:.3f} s"
)
print(
f"Greens function inversion: {times['green_function_inversion_time'] - times['reference_rotations_time']:.3f} s"
)
print(
f"Calculate energies and magnetic components: {times['end_time'] - times['green_function_inversion_time']:.3f} s"
)