WARNING: ran pre commit hooks on these, this may break stuff...

class-solution
Daniel Pozsar 2 months ago
parent 49d2be4982
commit 0db938aa50

@ -1,16 +1,16 @@
================================================================================================================================================================
Input file:
Input file:
/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf
Output file:
Output file:
./Fe3GeTe2_benchmark_on_15k_300eset.pickle
Number of nodes in the parallel cluster: 1
================================================================================================================================================================
Cell [Ang]:
Cell [Ang]:
[[ 3.79100000e+00 0.00000000e+00 0.00000000e+00]
[-1.89550000e+00 3.28310231e+00 0.00000000e+00]
[ 1.25954923e-15 2.18160327e-15 2.05700000e+01]]
================================================================================================================================================================
DFT axis:
DFT axis:
[0 0 1]
Quantization axis and perpendicular rotation directions:
[1 0 0] --» [array([0, 1, 0]), array([0, 0, 1])]
@ -52,18 +52,18 @@ Pairs integrated.
Magnetic parameters calculated.
##################################################################### GROGU OUTPUT #############################################################################
================================================================================================================================================================
Input file:
Input file:
/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf
Output file:
Output file:
./Fe3GeTe2_benchmark_on_15k_300eset.pickle
Number of nodes in the parallel cluster: 1
================================================================================================================================================================
Cell [Ang]:
Cell [Ang]:
[[ 3.79100000e+00 0.00000000e+00 0.00000000e+00]
[-1.89550000e+00 3.28310231e+00 0.00000000e+00]
[ 1.25954923e-15 2.18160327e-15 2.05700000e+01]]
================================================================================================================================================================
DFT axis:
DFT axis:
[0 0 1]
Quantization axis and perpendicular rotation directions:
[1 0 0] --» [array([0, 1, 0]), array([0, 0, 1])]
@ -77,7 +77,7 @@ Ebot: -13
Eset: 300
Esetp: 1000
================================================================================================================================================================
Atomic information:
Atomic information:
----------------------------------------------------------------------------------------------------------------------------------------------------------------
[atom index]Element(orbitals) x [Ang] y [Ang] z [Ang] Sx Sy Sz Q Lx Ly Lz Jx Jy Jz
----------------------------------------------------------------------------------------------------------------------------------------------------------------
@ -101,7 +101,7 @@ Symmetric-anisotropy: [-2.32809260e+00 1.41154602e-06 -9.40957764e-09 1.41154
J: [-4.22458475e+01 1.41154602e-06 -9.40957764e-09 1.41154602e-06
-4.12721879e+01 5.63570534e-07 -9.40957764e-09 5.63570534e-07
-3.62352293e+01]
Energies for debugging:
Energies for debugging:
array([[-3.52462334e-02, 5.22790048e-06, -5.22902762e-06,
-3.50238913e-02],
[-3.72242252e-02, 1.25410885e-08, -1.25222693e-08,
@ -121,7 +121,7 @@ Symmetric-anisotropy: [ 0.90424825 0.05359555 -0.07541288 0.05359555 0.51675
J: [-6.32993411e+01 5.35955501e-02 -7.54128755e-02 5.35955501e-02
-6.36868334e+01 -3.66014961e-02 -7.54128755e-02 -3.66014961e-02
-6.56245935e+01]
Energies for debugging:
Energies for debugging:
array([[-6.59077017e-02, 3.37863278e-03, -3.30542979e-03,
-6.63454261e-02],
[-6.53414853e-02, 5.87819515e-03, -5.72736940e-03,
@ -141,7 +141,7 @@ Symmetric-anisotropy: [ 0.9024007 0.05359252 0.07068773 0.05359252 0.51528
J: [-6.32966646e+01 5.35925196e-02 7.06877343e-02 5.35925196e-02
-6.36837832e+01 3.23646213e-02 7.06877343e-02 3.23646213e-02
-6.56167480e+01]
Energies for debugging:
Energies for debugging:
array([[-6.58989484e-02, -3.39791181e-03, 3.33318257e-03,
-6.63392511e-02],
[-6.53345476e-02, -5.88748024e-03, 5.74610477e-03,
@ -162,7 +162,7 @@ Symmetric-anisotropy: [ 2.81689694e-01 -9.99033947e-05 1.00133116e-04 -9.99033
J: [-6.41257790e+01 -9.99033947e-05 1.00133116e-04 -9.99033947e-05
-6.31697101e+01 9.79547273e-02 1.00133116e-04 9.79547273e-02
-6.59269169e+01]
Energies for debugging:
Energies for debugging:
array([[-6.51429577e-02, -6.76632987e-03, 6.57042041e-03,
-6.54030227e-02],
[-6.67108762e-02, -4.56940315e-07, 2.56674082e-07,
@ -183,7 +183,7 @@ Symmetric-anisotropy: [ 2.81831507e-01 -9.95864576e-05 7.28304048e-05 -9.95864
J: [-6.41271745e+01 -9.95864576e-05 7.28304048e-05 -9.95864576e-05
-6.31698065e+01 -9.79655745e-02 7.28304048e-05 -9.79655745e-02
-6.59300371e+01]
Energies for debugging:
Energies for debugging:
array([[-6.51430169e-02, 6.76649535e-03, -6.57056420e-03,
-6.54030961e-02],
[-6.67170573e-02, 6.60963771e-07, -8.06624581e-07,
@ -203,7 +203,7 @@ Symmetric-anisotropy: [ 0.9015663 -0.05345052 0.07536033 -0.05345052 0.51805
J: [-6.32853372e+01 -5.34505248e-02 7.53603270e-02 -5.34505248e-02
-6.36688505e+01 -3.23998894e-02 7.53603270e-02 -3.23998894e-02
-6.56065227e+01]
Energies for debugging:
Energies for debugging:
array([[-6.58846583e-02, 3.39716065e-03, -3.33236087e-03,
-6.63246913e-02],
[-6.53283870e-02, -5.87805205e-03, 5.72733140e-03,
@ -223,7 +223,7 @@ Symmetric-anisotropy: [ 0.90467906 -0.05344778 -0.07078134 -0.05344778 0.51541
J: [-6.32828201e+01 -5.34477814e-02 -7.07813383e-02 -5.34477814e-02
-6.36720845e+01 3.66227144e-02 -7.07813383e-02 3.66227144e-02
-6.56075929e+01]
Energies for debugging:
Energies for debugging:
array([[-6.58936437e-02, -3.37805282e-03, 3.30480739e-03,
-6.63310120e-02],
[-6.53215421e-02, 5.88691588e-03, -5.74535321e-03,
@ -242,7 +242,7 @@ Symmetric-anisotropy: [-0.02046716 -0.0444248 -0.03977157 -0.0444248 0.43165
-0.03977157 -0.07442493 -0.41118888]
J: [ 4.57908344 -0.0444248 -0.03977157 -0.0444248 5.03120664 -0.07442493
-0.03977157 -0.07442493 4.18836172]
Energies for debugging:
Energies for debugging:
array([[ 0.00472963, 0.00046075, -0.0003119 , 0.00466184],
[ 0.00364709, -0.00085554, 0.00093509, 0.0036577 ],
[ 0.00540057, -0.00061296, 0.00070181, 0.00550046]])
@ -258,7 +258,7 @@ Symmetric-anisotropy: [-0.08681631 0.00193669 -0.00538302 0.00193669 -0.07518
-0.00538302 -0.03449947 0.162005 ]
J: [-0.31785424 0.00193669 -0.00538302 0.00193669 -0.30622661 -0.03449947
-0.00538302 -0.03449947 -0.06903292]
Energies for debugging:
Energies for debugging:
array([[ 9.75938878e-06, 1.25731290e-04, -5.67323532e-05,
-1.49392424e-04],
[-1.47825232e-04, -3.25058913e-04, 3.35824948e-04,
@ -271,7 +271,7 @@ Test J_xx = E(y,z) = E(z,y)
-0.00022355248815234167 -0.00041215598873809247
================================================================================================================================================================
Runtime information:
Runtime information:
Total runtime: 295.33235375 s
----------------------------------------------------------------------------------------------------------------------------------------------------------------
Initial setup: 0.09973091699999992 s

@ -1,16 +1,16 @@
================================================================================================================================================================
Input file:
Input file:
/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf
Output file:
Output file:
./Fe3GeTe2_benchmark_on_15k_300eset_orb_test.pickle
Number of nodes in the parallel cluster: 1
================================================================================================================================================================
Cell [Ang]:
Cell [Ang]:
[[ 3.79100000e+00 0.00000000e+00 0.00000000e+00]
[-1.89550000e+00 3.28310231e+00 0.00000000e+00]
[ 1.25954923e-15 2.18160327e-15 2.05700000e+01]]
================================================================================================================================================================
DFT axis:
DFT axis:
[0 0 1]
Quantization axis and perpendicular rotation directions:
[1 0 0] --» [array([0, 1, 0]), array([0, 0, 1])]
@ -52,18 +52,18 @@ Pairs integrated.
Magnetic parameters calculated.
##################################################################### GROGU OUTPUT #############################################################################
================================================================================================================================================================
Input file:
Input file:
/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf
Output file:
Output file:
./Fe3GeTe2_benchmark_on_15k_300eset_orb_test.pickle
Number of nodes in the parallel cluster: 1
================================================================================================================================================================
Cell [Ang]:
Cell [Ang]:
[[ 3.79100000e+00 0.00000000e+00 0.00000000e+00]
[-1.89550000e+00 3.28310231e+00 0.00000000e+00]
[ 1.25954923e-15 2.18160327e-15 2.05700000e+01]]
================================================================================================================================================================
DFT axis:
DFT axis:
[0 0 1]
Quantization axis and perpendicular rotation directions:
[1 0 0] --» [array([0, 1, 0]), array([0, 0, 1])]
@ -77,7 +77,7 @@ Ebot: -13
Eset: 300
Esetp: 1000
================================================================================================================================================================
Atomic information:
Atomic information:
----------------------------------------------------------------------------------------------------------------------------------------------------------------
[atom index]Element(orbitals) x [Ang] y [Ang] z [Ang] Sx Sy Sz Q Lx Ly Lz Jx Jy Jz
----------------------------------------------------------------------------------------------------------------------------------------------------------------
@ -101,7 +101,7 @@ Symmetric-anisotropy: [ 3.04085587e-04 6.89183595e-08 -2.49215900e-07 6.89183
J: [ 3.48138853e-01 6.89183595e-08 -2.49215900e-07 6.89183595e-08
3.47340831e-01 5.24663366e-05 -2.49215900e-07 5.24663366e-05
3.48024619e-01]
Energies for debugging:
Energies for debugging:
array([[ 3.46973270e-04, 5.01274226e-07, -6.06206899e-07,
3.50103963e-04],
[ 3.49075968e-04, 1.06857880e-10, 3.91573921e-10,
@ -120,7 +120,7 @@ Symmetric-anisotropy: [ 0.00063826 -0.00205346 0.00155526 -0.00205346 0.00126
0.00155526 0.00091559 -0.00190362]
J: [ 0.21394658 -0.00205346 0.00155526 -0.00205346 0.21457368 0.00091559
0.00155526 0.00091559 0.2114047 ]
Energies for debugging:
Energies for debugging:
array([[ 2.09552786e-04, 8.85836233e-06, -1.06895444e-05,
2.12830226e-04],
[ 2.13256611e-04, 1.55953293e-05, -1.87058404e-05,
@ -140,7 +140,7 @@ Symmetric-anisotropy: [ 0.9024007 0.05359252 0.07068773 0.05359252 0.51528
J: [-6.32966646e+01 5.35925196e-02 7.06877343e-02 5.35925196e-02
-6.36837832e+01 3.23646213e-02 7.06877343e-02 3.23646213e-02
-6.56167480e+01]
Energies for debugging:
Energies for debugging:
array([[-6.58989484e-02, -3.39791181e-03, 3.33318257e-03,
-6.63392511e-02],
[-6.53345476e-02, -5.88748024e-03, 5.74610477e-03,
@ -161,7 +161,7 @@ Symmetric-anisotropy: [ 2.14788484e-03 6.88789785e-07 -6.77046017e-07 6.88789
J: [ 2.15033668e-01 6.88789785e-07 -6.77046017e-07 6.88789785e-07
2.12525607e-01 -1.77759079e-03 -6.77046017e-07 -1.77759079e-03
2.11098073e-01]
Energies for debugging:
Energies for debugging:
array([[ 2.12888094e-04, -1.83008074e-05, 2.18559890e-05,
2.12284870e-04],
[ 2.09308053e-04, -3.35069315e-10, 1.68916135e-09,
@ -182,7 +182,7 @@ Symmetric-anisotropy: [ 2.81831507e-01 -9.95864576e-05 7.28304048e-05 -9.95864
J: [-6.41271745e+01 -9.95864576e-05 7.28304048e-05 -9.95864576e-05
-6.31698065e+01 -9.79655745e-02 7.28304048e-05 -9.79655745e-02
-6.59300371e+01]
Energies for debugging:
Energies for debugging:
array([[-6.51430169e-02, 6.76649535e-03, -6.57056420e-03,
-6.54030961e-02],
[-6.67170573e-02, 6.60963771e-07, -8.06624581e-07,
@ -201,7 +201,7 @@ Symmetric-anisotropy: [ 0.00072503 0.0020527 -0.00155485 0.0020527 0.00098
-0.00155485 0.00102463 -0.00171383]
J: [ 0.21393071 0.0020527 -0.00155485 0.0020527 0.21419448 0.00102463
-0.00155485 0.00102463 0.21149184]
Energies for debugging:
Energies for debugging:
array([[ 2.09743450e-04, 8.87062962e-06, -1.09198949e-05,
2.12089719e-04],
[ 2.13240238e-04, -1.55974916e-05, 1.87071826e-05,
@ -221,7 +221,7 @@ Symmetric-anisotropy: [ 0.90467906 -0.05344778 -0.07078134 -0.05344778 0.51541
J: [-6.32828201e+01 -5.34477814e-02 -7.07813383e-02 -5.34477814e-02
-6.36720845e+01 3.66227144e-02 -7.07813383e-02 3.66227144e-02
-6.56075929e+01]
Energies for debugging:
Energies for debugging:
array([[-6.58936437e-02, -3.37805282e-03, 3.30480739e-03,
-6.63310120e-02],
[-6.53215421e-02, 5.88691588e-03, -5.74535321e-03,
@ -240,7 +240,7 @@ Symmetric-anisotropy: [-0.02046716 -0.0444248 -0.03977157 -0.0444248 0.43165
-0.03977157 -0.07442493 -0.41118888]
J: [ 4.57908344 -0.0444248 -0.03977157 -0.0444248 5.03120664 -0.07442493
-0.03977157 -0.07442493 4.18836172]
Energies for debugging:
Energies for debugging:
array([[ 0.00472963, 0.00046075, -0.0003119 , 0.00466184],
[ 0.00364709, -0.00085554, 0.00093509, 0.0036577 ],
[ 0.00540057, -0.00061296, 0.00070181, 0.00550046]])
@ -256,7 +256,7 @@ Symmetric-anisotropy: [-0.08681631 0.00193669 -0.00538302 0.00193669 -0.07518
-0.00538302 -0.03449947 0.162005 ]
J: [-0.31785424 0.00193669 -0.00538302 0.00193669 -0.30622661 -0.03449947
-0.00538302 -0.03449947 -0.06903292]
Energies for debugging:
Energies for debugging:
array([[ 9.75938878e-06, 1.25731290e-04, -5.67323532e-05,
-1.49392424e-04],
[-1.47825232e-04, -3.25058913e-04, 3.35824948e-04,
@ -269,7 +269,7 @@ Test J_xx = E(y,z) = E(z,y)
-0.00022355248815234167 -0.00041215598873809247
================================================================================================================================================================
Runtime information:
Runtime information:
Total runtime: 340.88071287500003 s
----------------------------------------------------------------------------------------------------------------------------------------------------------------
Initial setup: 0.11835845800000011 s

@ -1,16 +1,16 @@
================================================================================================================================================================
Input file:
Input file:
/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf
Output file:
Output file:
./Fe3GeTe2_benchmark_on_15k_300eset_orb_test2.pickle
Number of nodes in the parallel cluster: 1
================================================================================================================================================================
Cell [Ang]:
Cell [Ang]:
[[ 3.79100000e+00 0.00000000e+00 0.00000000e+00]
[-1.89550000e+00 3.28310231e+00 0.00000000e+00]
[ 1.25954923e-15 2.18160327e-15 2.05700000e+01]]
================================================================================================================================================================
DFT axis:
DFT axis:
[0 0 1]
Quantization axis and perpendicular rotation directions:
[1 0 0] --» [array([0, 1, 0]), array([0, 0, 1])]
@ -52,18 +52,18 @@ Pairs integrated.
Magnetic parameters calculated.
##################################################################### GROGU OUTPUT #############################################################################
================================================================================================================================================================
Input file:
Input file:
/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf
Output file:
Output file:
./Fe3GeTe2_benchmark_on_15k_300eset_orb_test2.pickle
Number of nodes in the parallel cluster: 1
================================================================================================================================================================
Cell [Ang]:
Cell [Ang]:
[[ 3.79100000e+00 0.00000000e+00 0.00000000e+00]
[-1.89550000e+00 3.28310231e+00 0.00000000e+00]
[ 1.25954923e-15 2.18160327e-15 2.05700000e+01]]
================================================================================================================================================================
DFT axis:
DFT axis:
[0 0 1]
Quantization axis and perpendicular rotation directions:
[1 0 0] --» [array([0, 1, 0]), array([0, 0, 1])]
@ -77,7 +77,7 @@ Ebot: -13
Eset: 300
Esetp: 1000
================================================================================================================================================================
Atomic information:
Atomic information:
----------------------------------------------------------------------------------------------------------------------------------------------------------------
[atom index]Element(orbitals) x [Ang] y [Ang] z [Ang] Sx Sy Sz Q Lx Ly Lz Jx Jy Jz
----------------------------------------------------------------------------------------------------------------------------------------------------------------
@ -101,7 +101,7 @@ Symmetric-anisotropy: [-2.32043212e+00 2.53801348e-06 -1.08593736e-06 2.53801
J: [-4.31923232e+01 2.53801348e-06 -1.08593736e-06 2.53801348e-06
-4.22223518e+01 7.74258719e-05 -1.08593736e-06 7.74258719e-05
-3.72009983e+01]
Energies for debugging:
Energies for debugging:
array([[-3.62152318e-02, 6.08744793e-06, -6.24229967e-06,
-3.59883911e-02],
[-3.81867648e-02, -2.07836820e-09, 4.25024293e-09,
@ -121,7 +121,7 @@ Symmetric-anisotropy: [ 0.90811936 0.04789656 -0.07353011 0.04789656 0.52317
J: [-6.11208170e+01 4.78965641e-02 -7.35301053e-02 4.78965641e-02
-6.15057604e+01 -3.53313894e-02 -7.35301053e-02 -3.53313894e-02
-6.34602317e+01]
Energies for debugging:
Energies for debugging:
array([[-6.37479933e-02, 3.26584482e-03, -3.19518204e-03,
-6.41681572e-02],
[-6.31724700e-02, 5.68317362e-03, -5.53611341e-03,
@ -141,7 +141,7 @@ Symmetric-anisotropy: [ 0.9024007 0.05359252 0.07068773 0.05359252 0.51528
J: [-6.32966646e+01 5.35925196e-02 7.06877343e-02 5.35925196e-02
-6.36837832e+01 3.23646213e-02 7.06877343e-02 3.23646213e-02
-6.56167480e+01]
Energies for debugging:
Energies for debugging:
array([[-6.58989484e-02, -3.39791181e-03, 3.33318257e-03,
-6.63392511e-02],
[-6.53345476e-02, -5.88748024e-03, 5.74610477e-03,
@ -162,7 +162,7 @@ Symmetric-anisotropy: [ 2.91447198e-01 -1.04541004e-04 1.02420326e-04 -1.04541
J: [-6.19437002e+01 -1.04541004e-04 1.02420326e-04 -1.04541004e-04
-6.09961853e+01 9.61259121e-02 1.02420326e-04 9.61259121e-02
-6.37655566e+01]
Energies for debugging:
Energies for debugging:
array([[-6.29770048e-02, -6.54086391e-03, 6.34861208e-03,
-6.32308800e-02],
[-6.45541084e-02, -4.72318891e-07, 2.67478238e-07,
@ -183,7 +183,7 @@ Symmetric-anisotropy: [ 2.81831507e-01 -9.95864576e-05 7.28304048e-05 -9.95864
J: [-6.41271745e+01 -9.95864576e-05 7.28304048e-05 -9.95864576e-05
-6.31698065e+01 -9.79655745e-02 7.28304048e-05 -9.79655745e-02
-6.59300371e+01]
Energies for debugging:
Energies for debugging:
array([[-6.51430169e-02, 6.76649535e-03, -6.57056420e-03,
-6.54030961e-02],
[-6.67170573e-02, 6.60963771e-07, -8.06624581e-07,
@ -203,7 +203,7 @@ Symmetric-anisotropy: [ 0.90589405 -0.04774783 0.07347635 -0.04774783 0.52393
J: [-6.11067929e+01 -4.77478280e-02 7.34763489e-02 -4.77478280e-02
-6.14887510e+01 -3.17998960e-02 7.34763489e-02 -3.17998960e-02
-6.34425170e+01]
Energies for debugging:
Energies for debugging:
array([[-6.37256875e-02, 3.28370499e-03, -3.22010520e-03,
-6.41494027e-02],
[-6.31593465e-02, -5.68293772e-03, 5.53598502e-03,
@ -223,7 +223,7 @@ Symmetric-anisotropy: [ 0.90467906 -0.05344778 -0.07078134 -0.05344778 0.51541
J: [-6.32828201e+01 -5.34477814e-02 -7.07813383e-02 -5.34477814e-02
-6.36720845e+01 3.66227144e-02 -7.07813383e-02 3.66227144e-02
-6.56075929e+01]
Energies for debugging:
Energies for debugging:
array([[-6.58936437e-02, -3.37805282e-03, 3.30480739e-03,
-6.63310120e-02],
[-6.53215421e-02, 5.88691588e-03, -5.74535321e-03,
@ -242,7 +242,7 @@ Symmetric-anisotropy: [-0.02046716 -0.0444248 -0.03977157 -0.0444248 0.43165
-0.03977157 -0.07442493 -0.41118888]
J: [ 4.57908344 -0.0444248 -0.03977157 -0.0444248 5.03120664 -0.07442493
-0.03977157 -0.07442493 4.18836172]
Energies for debugging:
Energies for debugging:
array([[ 0.00472963, 0.00046075, -0.0003119 , 0.00466184],
[ 0.00364709, -0.00085554, 0.00093509, 0.0036577 ],
[ 0.00540057, -0.00061296, 0.00070181, 0.00550046]])
@ -258,7 +258,7 @@ Symmetric-anisotropy: [-0.08681631 0.00193669 -0.00538302 0.00193669 -0.07518
-0.00538302 -0.03449947 0.162005 ]
J: [-0.31785424 0.00193669 -0.00538302 0.00193669 -0.30622661 -0.03449947
-0.00538302 -0.03449947 -0.06903292]
Energies for debugging:
Energies for debugging:
array([[ 9.75938878e-06, 1.25731290e-04, -5.67323532e-05,
-1.49392424e-04],
[-1.47825232e-04, -3.25058913e-04, 3.35824948e-04,
@ -271,7 +271,7 @@ Test J_xx = E(y,z) = E(z,y)
-0.00022355248815234167 -0.00041215598873809247
================================================================================================================================================================
Runtime information:
Runtime information:
Total runtime: 376.47007308300005 s
----------------------------------------------------------------------------------------------------------------------------------------------------------------
Initial setup: 0.10374624999999993 s

@ -1,16 +1,16 @@
================================================================================================================================================================
Input file:
Input file:
/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf
Output file:
Output file:
./Fe3GeTe2_benchmark_on_15k_300eset_orb_test3.pickle
Number of nodes in the parallel cluster: 1
================================================================================================================================================================
Cell [Ang]:
Cell [Ang]:
[[ 3.79100000e+00 0.00000000e+00 0.00000000e+00]
[-1.89550000e+00 3.28310231e+00 0.00000000e+00]
[ 1.25954923e-15 2.18160327e-15 2.05700000e+01]]
================================================================================================================================================================
DFT axis:
DFT axis:
[0 0 1]
Quantization axis and perpendicular rotation directions:
[1 0 0] --» [array([0, 1, 0]), array([0, 0, 1])]
@ -52,18 +52,18 @@ Pairs integrated.
Magnetic parameters calculated.
##################################################################### GROGU OUTPUT #############################################################################
================================================================================================================================================================
Input file:
Input file:
/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf
Output file:
Output file:
./Fe3GeTe2_benchmark_on_15k_300eset_orb_test3.pickle
Number of nodes in the parallel cluster: 1
================================================================================================================================================================
Cell [Ang]:
Cell [Ang]:
[[ 3.79100000e+00 0.00000000e+00 0.00000000e+00]
[-1.89550000e+00 3.28310231e+00 0.00000000e+00]
[ 1.25954923e-15 2.18160327e-15 2.05700000e+01]]
================================================================================================================================================================
DFT axis:
DFT axis:
[0 0 1]
Quantization axis and perpendicular rotation directions:
[1 0 0] --» [array([0, 1, 0]), array([0, 0, 1])]
@ -77,7 +77,7 @@ Ebot: -13
Eset: 300
Esetp: 1000
================================================================================================================================================================
Atomic information:
Atomic information:
----------------------------------------------------------------------------------------------------------------------------------------------------------------
[atom index]Element(orbitals) x [Ang] y [Ang] z [Ang] Sx Sy Sz Q Lx Ly Lz Jx Jy Jz
----------------------------------------------------------------------------------------------------------------------------------------------------------------
@ -101,7 +101,7 @@ Symmetric-anisotropy: [-2.32809260e+00 1.41154602e-06 -9.40957764e-09 1.41154
J: [-4.22458475e+01 1.41154602e-06 -9.40957764e-09 1.41154602e-06
-4.12721879e+01 5.63570534e-07 -9.40957764e-09 5.63570534e-07
-3.62352293e+01]
Energies for debugging:
Energies for debugging:
array([[-3.52462334e-02, 5.22790048e-06, -5.22902762e-06,
-3.50238913e-02],
[-3.72242252e-02, 1.25410885e-08, -1.25222693e-08,
@ -121,7 +121,7 @@ Symmetric-anisotropy: [ 0.00118024 -0.00059551 0.00215378 -0.00059551 0.00208
J: [ 8.88196640e-01 -5.95511036e-04 2.15378323e-03 -5.95511036e-04
8.89105004e-01 1.17990204e-03 2.15378323e-03 1.17990204e-03
8.83747559e-01]
Energies for debugging:
Energies for debugging:
array([[ 8.83744987e-04, -7.99390205e-06, 5.63409797e-06,
8.79698388e-04],
[ 8.83750131e-04, -1.46860980e-05, 1.03785316e-05,
@ -141,7 +141,7 @@ Symmetric-anisotropy: [ 0.00121184 -0.00059549 -0.00251075 -0.00059549 0.00196
J: [ 8.88030729e-01 -5.95487820e-04 -2.51075463e-03 -5.95487820e-04
8.88784872e-01 -1.53973241e-03 -2.51075463e-03 -1.53973241e-03
8.83641063e-01]
Energies for debugging:
Energies for debugging:
array([[ 8.83607807e-04, 8.40203736e-06, -5.32257253e-06,
8.79039963e-04],
[ 8.83674318e-04, 1.51089504e-05, -1.00874412e-05,
@ -162,7 +162,7 @@ Symmetric-anisotropy: [ 1.81701265e-03 3.64387859e-07 -3.98367585e-07 3.64387
J: [ 8.89205217e-01 3.64387859e-07 -3.98367585e-07 3.64387859e-07
8.88484078e-01 -2.68591644e-03 -3.98367585e-07 -2.68591644e-03
8.84475317e-01]
Energies for debugging:
Energies for debugging:
array([[ 8.85246673e-04, 1.60298046e-05, -1.06579717e-05,
8.79437935e-04],
[ 8.83703961e-04, -2.70801139e-09, 3.50474656e-09,
@ -183,7 +183,7 @@ Symmetric-anisotropy: [ 2.04264547e-03 3.37868118e-07 -1.11445852e-07 3.37868
J: [ 8.89577626e-01 3.37868118e-07 -1.11445852e-07 3.37868118e-07
8.88482966e-01 2.68621558e-03 -1.11445852e-07 2.68621558e-03
8.84544350e-01]
Energies for debugging:
Energies for debugging:
array([[ 8.85244669e-04, -1.60326937e-05, 1.06602626e-05,
8.79436556e-04],
[ 8.83844032e-04, 2.25306766e-09, -2.03017595e-09,
@ -203,7 +203,7 @@ Symmetric-anisotropy: [ 0.00131884 0.00059514 -0.00215344 0.00059514 0.00188
J: [ 8.88137090e-01 5.95135152e-04 -2.15344168e-03 5.95135152e-04
8.88706732e-01 1.53937991e-03 -2.15344168e-03 1.53937991e-03
8.83610919e-01]
Energies for debugging:
Energies for debugging:
array([[ 8.83530441e-04, -8.40658406e-06, 5.32782424e-06,
8.78961554e-04],
[ 8.83691396e-04, 1.46897672e-05, -1.03828838e-05,
@ -223,7 +223,7 @@ Symmetric-anisotropy: [ 0.00107296 0.0005951 0.00251098 0.0005951 0.00216
J: [ 8.87970741e-01 5.95103772e-04 2.51097668e-03 5.95103772e-04
8.89062777e-01 -1.18003269e-03 2.51097668e-03 -1.18003269e-03
8.83659823e-01]
Energies for debugging:
Energies for debugging:
array([[ 8.83704519e-04, 7.99924309e-06, -5.63917770e-06,
8.79656541e-04],
[ 8.83615126e-04, -1.51117047e-05, 1.00897514e-05,
@ -242,7 +242,7 @@ Symmetric-anisotropy: [-0.00042022 -0.00062904 -0.0002685 -0.00062904 -0.00046
-0.0002685 -0.00021878 0.00088328]
J: [-0.00088759 -0.00062904 -0.0002685 -0.00062904 -0.00093043 -0.00021878
-0.0002685 -0.00021878 0.0004159 ]
Energies for debugging:
Energies for debugging:
array([[-7.73059157e-07, -5.77850763e-06, 6.21607755e-06,
-4.49512876e-07],
[ 1.60486730e-06, 2.66304599e-06, -2.12605204e-06,
@ -263,7 +263,7 @@ Symmetric-anisotropy: [-7.05667939e-04 -3.63676406e-06 6.10574306e-05 -3.63676
J: [-1.23948374e-03 -3.63676406e-06 6.10574306e-05 -3.63676406e-06
6.05619321e-04 1.11677253e-04 6.10574306e-05 1.11677253e-04
-9.67582986e-04]
Energies for debugging:
Energies for debugging:
array([[ 1.09205519e-06, -6.26479989e-07, 4.03125483e-07,
1.08736474e-06],
[-3.02722116e-06, -1.80253356e-07, 5.81384945e-08,
@ -276,7 +276,7 @@ Test J_xx = E(y,z) = E(z,y)
-2.6416569513028827e-06 1.6268947133712035e-07
================================================================================================================================================================
Runtime information:
Runtime information:
Total runtime: 313.759723375 s
----------------------------------------------------------------------------------------------------------------------------------------------------------------
Initial setup: 0.11209495800000013 s

Binary file not shown.

Binary file not shown.

@ -6,18 +6,18 @@ Pairs integrated.
Magnetic parameters calculated.
##################################################################### GROGU OUTPUT #############################################################################
================================================================================================================================================================
Input file:
Input file:
./lat3_791/Fe3GeTe2.fdf
Output file:
Output file:
./Fe3GeTe2_benchmark_on_100k_600eset_final_test.pickle
Number of nodes in the parallel cluster: 8
================================================================================================================================================================
Cell [Ang]:
Cell [Ang]:
[[ 3.79100000e+00 0.00000000e+00 0.00000000e+00]
[-1.89550000e+00 3.28310231e+00 0.00000000e+00]
[ 1.25954923e-15 2.18160327e-15 2.05700000e+01]]
================================================================================================================================================================
DFT axis:
DFT axis:
[0 0 1]
Quantization axis and perpendicular rotation directions:
[1 0 0] --» [array([0, 1, 0]), array([0, 0, 1])]
@ -31,7 +31,7 @@ Ebot: -15
Eset: 600
Esetp: 10000
================================================================================================================================================================
Atomic information:
Atomic information:
----------------------------------------------------------------------------------------------------------------------------------------------------------------
[atom index]Element(orbitals) x [Ang] y [Ang] z [Ang] Sx Sy Sz Q Lx Ly Lz Jx Jy Jz
----------------------------------------------------------------------------------------------------------------------------------------------------------------
@ -55,7 +55,7 @@ Symmetric-anisotropy: [ 6.77397756e-01 -8.36063246e-05 -7.29981887e-05 -8.36063
J: [-8.56670311e+01 -8.36063246e-05 -7.29981887e-05 -8.36063246e-05
-8.56601766e+01 -2.46503172e-04 -7.29981887e-05 -2.46503172e-04
-8.77060789e+01]
Energies for debugging:
Energies for debugging:
array([[-8.76976821e-02, 1.27205583e-04, -1.26712576e-04,
-8.78732914e-02],
[-8.77144756e-02, 7.41805748e-07, -5.95809371e-07,
@ -75,7 +75,7 @@ Symmetric-anisotropy: [ 0.11829377 0.13803139 -0.06754341 0.13803139 -0.12583
J: [-4.20174449e+01 1.38031387e-01 -6.75434084e-02 1.38031387e-01
-4.22615750e+01 -4.02994850e-02 -6.75434084e-02 -4.02994850e-02
-4.21281960e+01]
Energies for debugging:
Energies for debugging:
array([[-0.04223303, 0.00119016, -0.00110956, -0.04240784],
[-0.04202336, 0.0020543 , -0.00191921, -0.04207956],
[-0.04211531, -0.00012712, -0.00014894, -0.04195533]])
@ -92,7 +92,7 @@ Symmetric-anisotropy: [ 0.11988385 0.13803161 0.0551642 0.13803161 -0.12943
J: [-4.20176795e+01 1.38031610e-01 5.51641982e-02 1.38031610e-01
-4.22670024e+01 3.04710785e-02 5.51641982e-02 3.04710785e-02
-4.21280081e+01]
Energies for debugging:
Energies for debugging:
array([[-0.04223534, -0.00117653, 0.00111558, -0.04241802],
[-0.04202068, -0.00209768, 0.00198735, -0.04207936],
[-0.04211599, -0.00012712, -0.00014894, -0.041956 ]])
@ -110,7 +110,7 @@ Symmetric-anisotropy: [-2.67391508e-01 -2.42945028e-04 9.46271135e-04 -2.42945
J: [-4.24151185e+01 -2.42945028e-04 9.46271135e-04 -2.42945028e-04
-4.18878439e+01 7.17582186e-02 9.46271135e-04 7.17582186e-02
-4.21402187e+01]
Energies for debugging:
Energies for debugging:
array([[-4.18938511e-02, -2.38553699e-03, 2.24202055e-03,
-4.18980295e-02],
[-4.23865863e-02, -2.25632958e-06, 3.63787311e-07,
@ -131,7 +131,7 @@ Symmetric-anisotropy: [-2.65342856e-01 -2.43008373e-04 3.22482902e-04 -2.43008
J: [-4.24107964e+01 -2.43008373e-04 3.22482902e-04 -2.43008373e-04
-4.18869782e+01 -7.16741491e-02 3.22482902e-04 -7.16741491e-02
-4.21385861e+01]
Energies for debugging:
Energies for debugging:
array([[-4.18915056e-02, 2.38789820e-03, -2.24454990e-03,
-4.18956238e-02],
[-4.23856665e-02, -1.33382850e-06, 6.88862698e-07,
@ -151,7 +151,7 @@ Symmetric-anisotropy: [ 0.11573153 -0.13810044 0.06662932 -0.13810044 -0.12877
J: [-4.20138920e+01 -1.38100436e-01 6.66293166e-02 -1.38100436e-01
-4.22583962e+01 -3.05751769e-02 6.66293166e-02 -3.05751769e-02
-4.21165824e+01]
Energies for debugging:
Energies for debugging:
array([[-0.04221921, 0.00117679, -0.00111564, -0.04240089],
[-0.04201396, -0.00205595, 0.00192269, -0.04207138],
[-0.0421159 , 0.00013899, 0.00013721, -0.0419564 ]])
@ -168,7 +168,7 @@ Symmetric-anisotropy: [ 0.11306029 -0.13810087 -0.05589985 -0.13810087 -0.12635
J: [-4.20142489e+01 -1.38100866e-01 -5.58998501e-02 -1.38100866e-01
-4.22536673e+01 4.01786543e-02 -5.58998501e-02 4.01786543e-02
-4.21140114e+01]
Energies for debugging:
Energies for debugging:
array([[-0.04221703, -0.00118762, 0.00110726, -0.04239074],
[-0.04201099, 0.00209574, -0.00198394, -0.04207141],
[-0.04211659, 0.000139 , 0.00013721, -0.04195709]])
@ -184,7 +184,7 @@ Symmetric-anisotropy: [ 0.13387827 0.05652754 0.02339254 0.05652754 -0.12675
0.02339254 -0.0364858 -0.00712192]
J: [-1.68936686 0.05652754 0.02339254 0.05652754 -1.95000147 -0.0364858
0.02339254 -0.0364858 -1.83036705]
Energies for debugging:
Energies for debugging:
array([[-1.84775366e-03, 6.35424602e-05, 9.42913717e-06,
-2.05719754e-03],
[-1.81298045e-03, -3.56569571e-04, 3.09784500e-04,
@ -203,7 +203,7 @@ Symmetric-anisotropy: [-0.01463505 -0.02335298 -0.0115624 -0.02335298 0.01019
-0.0115624 -0.00490545 0.00444478]
J: [ 0.06951734 -0.02335298 -0.0115624 -0.02335298 0.09434264 -0.00490545
-0.0115624 -0.00490545 0.08859717]
Energies for debugging:
Energies for debugging:
array([[ 7.78485206e-05, 3.25647165e-05, -2.27538126e-05,
1.23484184e-04],
[ 9.93458145e-05, 2.34992299e-05, -3.74434418e-07,
@ -216,7 +216,7 @@ Test J_xx = E(y,z) = E(z,y)
6.878084728235458e-05 7.025382868651086e-05
================================================================================================================================================================
Runtime information:
Runtime information:
Total runtime: 3558.681470017007 s
----------------------------------------------------------------------------------------------------------------------------------------------------------------
Initial setup: 1.776719820976723 s
@ -240,18 +240,18 @@ sys 0m0.020s
========================================
Atom Angstrom
# Label, x y z Sx Sy Sz #Q Lx Ly Lz Jx Jy Jz
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Te1 1.8955 1.0943 13.1698 -0.0000 0.0000 -0.1543 # 5.9345 -0.0000 0.0000 -0.0537 -0.0000 0.0000 -0.2080
Te2 1.8955 1.0943 7.4002 0.0000 -0.0000 -0.1543 # 5.9345 0.0000 -0.0000 -0.0537 0.0000 -0.0000 -0.2080
Ge3 -0.0000 2.1887 10.2850 0.0000 0.0000 -0.1605 # 3.1927 -0.0000 0.0000 0.0012 0.0000 0.0000 -0.1593
Fe4 -0.0000 0.0000 11.6576 0.0001 -0.0001 2.0466 # 8.3044 0.0000 -0.0000 0.1606 0.0001 -0.0001 2.2072
Fe5 -0.0000 0.0000 8.9124 -0.0001 0.0001 2.0466 # 8.3044 -0.0000 0.0000 0.1606 -0.0001 0.0001 2.2072
Fe6 1.8955 1.0944 10.2850 0.0000 0.0000 1.5824 # 8.3296 -0.0000 -0.0000 0.0520 -0.0000 0.0000 1.6344
Te1 1.8955 1.0943 13.1698 -0.0000 0.0000 -0.1543 # 5.9345 -0.0000 0.0000 -0.0537 -0.0000 0.0000 -0.2080
Te2 1.8955 1.0943 7.4002 0.0000 -0.0000 -0.1543 # 5.9345 0.0000 -0.0000 -0.0537 0.0000 -0.0000 -0.2080
Ge3 -0.0000 2.1887 10.2850 0.0000 0.0000 -0.1605 # 3.1927 -0.0000 0.0000 0.0012 0.0000 0.0000 -0.1593
Fe4 -0.0000 0.0000 11.6576 0.0001 -0.0001 2.0466 # 8.3044 0.0000 -0.0000 0.1606 0.0001 -0.0001 2.2072
Fe5 -0.0000 0.0000 8.9124 -0.0001 0.0001 2.0466 # 8.3044 -0.0000 0.0000 0.1606 -0.0001 0.0001 2.2072
Fe6 1.8955 1.0944 10.2850 0.0000 0.0000 1.5824 # 8.3296 -0.0000 -0.0000 0.0520 -0.0000 0.0000 1.6344
==================================================================================================================================
Exchange meV
--------------------------------------------------------------------------------
# at1 at2 i j k # d (Ang)

@ -1,4 +1,4 @@
-2878.0655830244073
The above number is the electronic (free)energy: -2887.7690769348492
-2878.0655830244073
The above number is the electronic (free)energy: -2887.7690769348492
Plus the pressure : 1.3595453680289311E-005 ( 0.20000000000000001 GPa)
times the orbital volume (in Bohr**3): 52457.833503994734
times the orbital volume (in Bohr**3): 52457.833503994734

@ -1,4 +1,4 @@
-2878.0654643176349
The above number is the electronic (free) harris energy: -2887.7689582280768
-2878.0654643176349
The above number is the electronic (free) harris energy: -2887.7689582280768
Plus the pressure : 1.3595453680289311E-005 ( 0.20000000000000001 GPa)
times the orbital volume (in Bohr**3): 52457.833503994734
times the orbital volume (in Bohr**3): 52457.833503994734

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -6823,4 +6823,3 @@ spec = Atomic species label
isc = Unit cell indexes to which orbital belongs:
center(io) = center(iuo) + sum_(i=1:3) cell_vec(i) * isc(i)
iuo = Equivalent orbital in first unit cell

@ -21,4 +21,3 @@
issue = {086005},
doi = {10.1088/0953-8984/24/8/086005},
}

@ -31,7 +31,7 @@ LatticeConstant 1.0 Ang
%block kgrid_Monkhorst_Pack
%block kgrid_Monkhorst_Pack
20 0 0 0
0 20 0 0
0 0 1 0
@ -70,20 +70,20 @@ WriteOrbMom T
# --------------
# XC
# --------------
xc.functional GGA
xc.authors PBE
xc.functional GGA
xc.authors PBE
# --------------
# GRID
# --------------
MeshCutoff 1000. Ry
GridCellSampling [ 2 2 2 ]
GridCellSampling [ 2 2 2 ]
# --------------
# Solution Method
# --------------
SolutionMethod diagon
ElectronicTemperature 0.1 K
ElectronicTemperature 0.1 K
# --------------
# SCF
@ -102,7 +102,7 @@ DM.UseSaveDM T
# --------------
# MD
# --------------
MD.TypeOfRun CG
MD.TypeOfRun CG
MD.Steps 1000
MD.MaxCGDispl 0.05 Ang
MD.MaxForceTol 0.005 eV/Ang
@ -134,4 +134,4 @@ DM.UseSaveDM T
WriteCoorXmol T
Diag.ParallelOverK T
Diag.ParallelOverK T

@ -13,9 +13,9 @@ Lua support
* Running on 20 nodes in parallel
>> Start of run: 17-APR-2024 11:41:22
***********************
* WELCOME TO SIESTA *
***********************
***********************
* WELCOME TO SIESTA *
***********************
reinit: Reading from standard input
reinit: Dumped input in INPUT_TMP.58436
@ -72,18 +72,18 @@ WriteOrbMom T
# --------------
# XC
# --------------
xc.functional GGA
xc.authors PBE
xc.functional GGA
xc.authors PBE
# --------------
# GRID
# --------------
MeshCutoff 1000. Ry
GridCellSampling [ 2 2 2 ]
GridCellSampling [ 2 2 2 ]
# --------------
# Solution Method
# --------------
SolutionMethod diagon
ElectronicTemperature 0.1 K
ElectronicTemperature 0.1 K
# --------------
# SCF
# --------------
@ -185,25 +185,25 @@ Fe Z= 26 Mass= 55.850 Charge= 0.17977+309
Lmxo=2 Lmxkb= 3 BasisType=split Semic=F
L=0 Nsemic=0 Cnfigmx=4
i=1 nzeta=2 polorb=1 (4s)
splnorm: 0.15000
vcte: 0.0000
rinn: 0.0000
qcoe: 0.0000
qyuk: 0.0000
splnorm: 0.15000
vcte: 0.0000
rinn: 0.0000
qcoe: 0.0000
qyuk: 0.0000
qwid: 0.10000E-01
rcs: 0.0000 0.0000
lambdas: 1.0000 1.0000
rcs: 0.0000 0.0000
lambdas: 1.0000 1.0000
L=1 Nsemic=0 Cnfigmx=4
L=2 Nsemic=0 Cnfigmx=3
i=1 nzeta=2 polorb=0 (3d)
splnorm: 0.15000
vcte: 0.0000
rinn: 0.0000
qcoe: 0.0000
qyuk: 0.0000
splnorm: 0.15000
vcte: 0.0000
rinn: 0.0000
qcoe: 0.0000
qyuk: 0.0000
qwid: 0.10000E-01
rcs: 0.0000 0.0000
lambdas: 1.0000 1.0000
rcs: 0.0000 0.0000
lambdas: 1.0000 1.0000
-------------------------------------------------------------------------------
L=0 Nkbl=1 erefs: 0.17977+309
L=1 Nkbl=2 erefs: 0.17977+309 0.17977+309
@ -215,7 +215,7 @@ L=3 Nkbl=1 erefs: 0.17977+309
atom: Called for Fe (Z = 26)
read_vps: Pseudopotential generation method:
read_vps: ATM3.3 Troullier-Martins
read_vps: ATM3.3 Troullier-Martins
Valence charge for ps generation: 8.00000
read_vps: Pseudopotential includes a core correction:
@ -236,7 +236,7 @@ atom: Estimated core radius 2.79930
atom: Maximum radius for 4*pi*r*r*local-pseudopot. charge 3.09372
atom: Maximum radius for r*vlocal+2*Zval: 2.83451
KBgen: Kleinman-Bylander projectors:
KBgen: Kleinman-Bylander projectors:
GHOST: No ghost state for L = 0
l= 0 rc= 2.047986 el= -0.311923 Ekb= 4.023955 kbcos= 0.247515
j- l= 1 rc= 2.047986 el= -0.065197 Ekb= 2.985458 kbcos= 0.163279
@ -258,7 +258,7 @@ KBgen: Total number of Kleinman-Bylander projectors: 37
atom: -------------------------------------------------------------------------
atom: SANKEY-TYPE ORBITALS:
atom: Selected multiple-zeta basis: split
atom: Selected multiple-zeta basis: split
SPLIT: Orbitals with angular momentum L= 0
@ -319,9 +319,9 @@ POLgen: Polarization orbital for state 4s
atom: Total number of Sankey-type orbitals: 15
atm_pop: Valence configuration (for local Pseudopot. screening):
4s( 2.00)
4p( 0.00)
3d( 6.00)
4s( 2.00)
4p( 0.00)
3d( 6.00)
Vna: chval, zval: 8.00000 8.00000
Vna: Cut-off radius for the neutral-atom potential: 9.649379
@ -335,24 +335,24 @@ Ge Z= 32 Mass= 72.610 Charge= 0.17977+309
Lmxo=1 Lmxkb= 3 BasisType=split Semic=F
L=0 Nsemic=0 Cnfigmx=4
i=1 nzeta=2 polorb=0 (4s)
splnorm: 0.15000
vcte: 0.0000
rinn: 0.0000
qcoe: 0.0000
qyuk: 0.0000
splnorm: 0.15000
vcte: 0.0000
rinn: 0.0000
qcoe: 0.0000
qyuk: 0.0000
qwid: 0.10000E-01
rcs: 0.0000 0.0000
lambdas: 1.0000 1.0000
rcs: 0.0000 0.0000
lambdas: 1.0000 1.0000
L=1 Nsemic=0 Cnfigmx=4
i=1 nzeta=2 polorb=1 (4p)
splnorm: 0.15000
vcte: 0.0000
rinn: 0.0000
qcoe: 0.0000
qyuk: 0.0000
splnorm: 0.15000
vcte: 0.0000
rinn: 0.0000
qcoe: 0.0000
qyuk: 0.0000
qwid: 0.10000E-01
rcs: 0.0000 0.0000
lambdas: 1.0000 1.0000
rcs: 0.0000 0.0000
lambdas: 1.0000 1.0000
-------------------------------------------------------------------------------
L=0 Nkbl=1 erefs: 0.17977+309
L=1 Nkbl=1 erefs: 0.17977+309
@ -364,7 +364,7 @@ L=3 Nkbl=1 erefs: 0.17977+309
atom: Called for Ge (Z = 32)
read_vps: Pseudopotential generation method:
read_vps: ATM3 Troullier-Martins
read_vps: ATM3 Troullier-Martins
Valence charge for ps generation: 4.00000
xc_check: Exchange-correlation functional:
@ -382,7 +382,7 @@ VLOCAL1: 99.9% of the norm of Vloc inside 12.819 Ry
atom: Maximum radius for 4*pi*r*r*local-pseudopot. charge 3.30931
atom: Maximum radius for r*vlocal+2*Zval: 2.88417
KBgen: Kleinman-Bylander projectors:
KBgen: Kleinman-Bylander projectors:
GHOST: No ghost state for L = 0
l= 0 rc= 3.435772 el= -0.860281 Ekb= 2.253895 kbcos= 0.346706
GHOST: No ghost state for L = 1
@ -402,7 +402,7 @@ KBgen: Total number of Kleinman-Bylander projectors: 31
atom: -------------------------------------------------------------------------
atom: SANKEY-TYPE ORBITALS:
atom: Selected multiple-zeta basis: split
atom: Selected multiple-zeta basis: split
SPLIT: Orbitals with angular momentum L= 0
@ -463,8 +463,8 @@ POLgen: Polarization orbital for state 4p
atom: Total number of Sankey-type orbitals: 13
atm_pop: Valence configuration (for local Pseudopot. screening):
4s( 2.00)
4p( 2.00)
4s( 2.00)
4p( 2.00)
Vna: chval, zval: 4.00000 4.00000
Vna: Cut-off radius for the neutral-atom potential: 9.339529
@ -477,24 +477,24 @@ Te Z= 52 Mass= 127.60 Charge= 0.17977+309
Lmxo=1 Lmxkb= 3 BasisType=split Semic=F
L=0 Nsemic=0 Cnfigmx=5
i=1 nzeta=2 polorb=0 (5s)
splnorm: 0.15000
vcte: 0.0000
rinn: 0.0000
qcoe: 0.0000
qyuk: 0.0000
splnorm: 0.15000
vcte: 0.0000
rinn: 0.0000
qcoe: 0.0000
qyuk: 0.0000
qwid: 0.10000E-01
rcs: 0.0000 0.0000
lambdas: 1.0000 1.0000
rcs: 0.0000 0.0000
lambdas: 1.0000 1.0000
L=1 Nsemic=0 Cnfigmx=5
i=1 nzeta=2 polorb=1 (5p)
splnorm: 0.15000
vcte: 0.0000
rinn: 0.0000
qcoe: 0.0000
qyuk: 0.0000
splnorm: 0.15000
vcte: 0.0000
rinn: 0.0000
qcoe: 0.0000
qyuk: 0.0000
qwid: 0.10000E-01
rcs: 0.0000 0.0000
lambdas: 1.0000 1.0000
rcs: 0.0000 0.0000
lambdas: 1.0000 1.0000
-------------------------------------------------------------------------------
L=0 Nkbl=1 erefs: 0.17977+309
L=1 Nkbl=1 erefs: 0.17977+309
@ -506,7 +506,7 @@ L=3 Nkbl=1 erefs: 0.17977+309
atom: Called for Te (Z = 52)
read_vps: Pseudopotential generation method:
read_vps: ATM4.2.7 Troullier-Martins
read_vps: ATM4.2.7 Troullier-Martins
Valence charge for ps generation: 6.00000
xc_check: Exchange-correlation functional:
@ -524,7 +524,7 @@ VLOCAL1: 99.9% of the norm of Vloc inside 12.767 Ry
atom: Maximum radius for 4*pi*r*r*local-pseudopot. charge 3.31594
atom: Maximum radius for r*vlocal+2*Zval: 2.92630
KBgen: Kleinman-Bylander projectors:
KBgen: Kleinman-Bylander projectors:
GHOST: No ghost state for L = 0
l= 0 rc= 3.619164 el= -1.105853 Ekb= 3.973827 kbcos= 0.331834
GHOST: No ghost state for L = 1
@ -544,7 +544,7 @@ KBgen: Total number of Kleinman-Bylander projectors: 31
atom: -------------------------------------------------------------------------
atom: SANKEY-TYPE ORBITALS:
atom: Selected multiple-zeta basis: split
atom: Selected multiple-zeta basis: split
SPLIT: Orbitals with angular momentum L= 0
@ -605,8 +605,8 @@ POLgen: Polarization orbital for state 5p
atom: Total number of Sankey-type orbitals: 13
atm_pop: Valence configuration (for local Pseudopot. screening):
5s( 2.00)
5p( 4.00)
5s( 2.00)
5p( 4.00)
Vna: chval, zval: 6.00000 6.00000
Vna: Cut-off radius for the neutral-atom potential: 8.155972
@ -615,7 +615,7 @@ atom: _________________________________________________________________________
prinput: Basis input ----------------------------------------------------------
PAO.BasisType split
PAO.BasisType split
%block ChemicalSpeciesLabel
1 26 Fe # Species index, atomic number, species label
@ -626,25 +626,25 @@ PAO.BasisType split
%block PAO.Basis # Define Basis set
Fe 2 # Species label, number of l-shells
n=4 0 2 P 1 # n, l, Nzeta, Polarization, NzetaPol
9.649 6.885
1.000 1.000
n=3 2 2 # n, l, Nzeta
6.632 2.565
1.000 1.000
9.649 6.885
1.000 1.000
n=3 2 2 # n, l, Nzeta
6.632 2.565
1.000 1.000
Ge 2 # Species label, number of l-shells
n=4 0 2 # n, l, Nzeta
6.581 4.412
1.000 1.000
n=4 0 2 # n, l, Nzeta
6.581 4.412
1.000 1.000
n=4 1 2 P 1 # n, l, Nzeta, Polarization, NzetaPol
9.340 5.665
1.000 1.000
9.340 5.665
1.000 1.000
Te 2 # Species label, number of l-shells
n=5 0 2 # n, l, Nzeta
6.195 4.205
1.000 1.000
n=5 0 2 # n, l, Nzeta
6.195 4.205
1.000 1.000
n=5 1 2 P 1 # n, l, Nzeta, Polarization, NzetaPol
8.156 5.009
1.000 1.000
8.156 5.009
1.000 1.000
%endblock PAO.Basis
prinput: ----------------------------------------------------------------------
@ -664,11 +664,11 @@ siesta: 0.00000 0.00000 21.82311 1 4
siesta: 0.00000 0.00000 17.04857 1 5
siesta: 3.58198 2.06806 19.43584 1 6
siesta: System type = slab
siesta: System type = slab
initatomlists: Number of atoms, orbitals, and projectors: 6 84 204
coxmol: Writing XMOL coordinates into file Fe3GeTe2.xyz
coxmol: Writing XMOL coordinates into file Fe3GeTe2.xyz
siesta: ******************** Simulation parameters ****************************
siesta:
@ -826,7 +826,7 @@ ts: **************************************************************
Begin CG opt. move = 0
====================================
outcoor: Atomic coordinates (fractional):
outcoor: Atomic coordinates (fractional):
0.66666667 0.33333333 0.62736262 3 1 Te
0.66666667 0.33333333 0.37263738 3 2 Te
0.33333333 0.66666667 0.50000000 2 3 Ge
@ -1203,7 +1203,7 @@ Target enthalpy (eV/cell) -2887.3781
moments: Magnetic moments from orbital angular momenta:
Species: Fe
Species: Fe
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -1262,7 +1262,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
6 Total 0.035 -0.000 0.000 0.035
Species: Ge
Species: Ge
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -1283,7 +1283,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
3 Total 0.033 -0.000 -0.000 -0.033
Species: Te
Species: Te
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -1325,7 +1325,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
mulliken: Atomic and Orbital Populations:
Species: Fe
Species: Fe
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -1384,7 +1384,7 @@ Atom Orb Charge Spin Svec
Total 25.03161 5.20582 -0.000 0.000 5.206
Species: Ge
Species: Ge
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -1407,7 +1407,7 @@ Atom Orb Charge Spin Svec
Total 28.19264 5.13266 -0.000 0.000 5.133
Species: Te
Species: Te
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -1451,7 +1451,7 @@ cgvc: WARNING: CG file not found
Begin CG opt. move = 1
====================================
outcoor: Atomic coordinates (fractional):
outcoor: Atomic coordinates (fractional):
0.66666736 0.33333257 0.62895986 3 1 Te
0.66666736 0.33333257 0.37104015 3 2 Te
0.33333155 0.66666849 0.50000000 2 3 Ge
@ -1478,7 +1478,7 @@ refcount: 1>
new_DM -- step: 2
Re-using DM from previous geometries...
Number of DMs in history: 1
DM extrapolation coefficients:
DM extrapolation coefficients:
1 1.00000
New DM after history re-use:
<dSpData2D:SpM extrapolated using coords
@ -1656,7 +1656,7 @@ Target enthalpy (eV/cell) -2887.4795
moments: Magnetic moments from orbital angular momenta:
Species: Fe
Species: Fe
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -1715,7 +1715,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
6 Total 0.039 -0.000 0.000 0.039
Species: Ge
Species: Ge
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -1736,7 +1736,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
3 Total 0.034 -0.000 -0.000 -0.034
Species: Te
Species: Te
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -1778,7 +1778,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
mulliken: Atomic and Orbital Populations:
Species: Fe
Species: Fe
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -1837,7 +1837,7 @@ Atom Orb Charge Spin Svec
Total 25.02154 5.28348 -0.000 0.000 5.283
Species: Ge
Species: Ge
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -1860,7 +1860,7 @@ Atom Orb Charge Spin Svec
Total 28.18575 5.20433 -0.000 0.000 5.204
Species: Te
Species: Te
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -1902,7 +1902,7 @@ Total 40.00000 5.05233 -0.000 0.000 5.052
Begin CG opt. move = 2
====================================
outcoor: Atomic coordinates (fractional):
outcoor: Atomic coordinates (fractional):
0.66666842 0.33333142 0.63139058 3 1 Te
0.66666842 0.33333142 0.36860945 3 2 Te
0.33332884 0.66667125 0.50000001 2 3 Ge
@ -1929,7 +1929,7 @@ refcount: 1>
new_DM -- step: 3
Re-using DM from previous geometries...
Number of DMs in history: 1
DM extrapolation coefficients:
DM extrapolation coefficients:
1 1.00000
New DM after history re-use:
<dSpData2D:SpM extrapolated using coords
@ -2148,7 +2148,7 @@ Target enthalpy (eV/cell) -2887.6020
moments: Magnetic moments from orbital angular momenta:
Species: Fe
Species: Fe
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -2207,7 +2207,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
6 Total 0.047 -0.000 0.000 0.047
Species: Ge
Species: Ge
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -2228,7 +2228,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
3 Total 0.039 0.000 0.000 -0.039
Species: Te
Species: Te
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -2270,7 +2270,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
mulliken: Atomic and Orbital Populations:
Species: Fe
Species: Fe
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -2329,7 +2329,7 @@ Atom Orb Charge Spin Svec
Total 25.00210 5.44061 -0.000 0.000 5.441
Species: Ge
Species: Ge
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -2352,7 +2352,7 @@ Atom Orb Charge Spin Svec
Total 28.17223 5.34996 -0.000 0.000 5.350
Species: Te
Species: Te
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -2394,7 +2394,7 @@ Total 40.00000 5.19246 -0.000 0.000 5.192
Begin CG opt. move = 3
====================================
outcoor: Atomic coordinates (fractional):
outcoor: Atomic coordinates (fractional):
0.66666948 0.33333027 0.63382131 3 1 Te
0.66666948 0.33333027 0.36617874 3 2 Te
0.33332613 0.66667402 0.50000002 2 3 Ge
@ -2421,7 +2421,7 @@ refcount: 1>
new_DM -- step: 4
Re-using DM from previous geometries...
Number of DMs in history: 1
DM extrapolation coefficients:
DM extrapolation coefficients:
1 1.00000
New DM after history re-use:
<dSpData2D:SpM extrapolated using coords
@ -2582,7 +2582,7 @@ Target enthalpy (eV/cell) -2887.6878
moments: Magnetic moments from orbital angular momenta:
Species: Fe
Species: Fe
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -2641,7 +2641,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
6 Total 0.047 0.000 -0.000 0.047
Species: Ge
Species: Ge
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -2662,7 +2662,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
3 Total 0.041 -0.000 0.000 -0.041
Species: Te
Species: Te
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -2704,7 +2704,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
mulliken: Atomic and Orbital Populations:
Species: Fe
Species: Fe
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -2763,7 +2763,7 @@ Atom Orb Charge Spin Svec
Total 24.98507 5.49344 -0.000 0.000 5.493
Species: Ge
Species: Ge
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -2786,7 +2786,7 @@ Atom Orb Charge Spin Svec
Total 28.16009 5.38968 -0.000 0.000 5.390
Species: Te
Species: Te
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -2828,7 +2828,7 @@ Total 40.00000 5.21298 -0.000 0.000 5.213
Begin CG opt. move = 4
====================================
outcoor: Atomic coordinates (fractional):
outcoor: Atomic coordinates (fractional):
0.66667053 0.33332911 0.63625203 3 1 Te
0.66667053 0.33332911 0.36374803 3 2 Te
0.33332342 0.66667678 0.50000003 2 3 Ge
@ -2855,7 +2855,7 @@ refcount: 1>
new_DM -- step: 5
Re-using DM from previous geometries...
Number of DMs in history: 1
DM extrapolation coefficients:
DM extrapolation coefficients:
1 1.00000
New DM after history re-use:
<dSpData2D:SpM extrapolated using coords
@ -3076,7 +3076,7 @@ Target enthalpy (eV/cell) -2887.7394
moments: Magnetic moments from orbital angular momenta:
Species: Fe
Species: Fe
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -3135,7 +3135,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
6 Total 0.044 -0.000 0.000 0.044
Species: Ge
Species: Ge
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -3156,7 +3156,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
3 Total 0.045 -0.000 -0.000 -0.045
Species: Te
Species: Te
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -3198,7 +3198,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
mulliken: Atomic and Orbital Populations:
Species: Fe
Species: Fe
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -3257,7 +3257,7 @@ Atom Orb Charge Spin Svec
Total 24.96519 5.59565 -0.000 0.000 5.596
Species: Ge
Species: Ge
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -3280,7 +3280,7 @@ Atom Orb Charge Spin Svec
Total 28.14610 5.47374 -0.000 0.000 5.474
Species: Te
Species: Te
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -3322,7 +3322,7 @@ Total 40.00000 5.26648 -0.000 0.000 5.266
Begin CG opt. move = 5
====================================
outcoor: Atomic coordinates (fractional):
outcoor: Atomic coordinates (fractional):
0.66667159 0.33332796 0.63868276 3 1 Te
0.66667159 0.33332796 0.36131733 3 2 Te
0.33332071 0.66667955 0.50000003 2 3 Ge
@ -3349,7 +3349,7 @@ refcount: 1>
new_DM -- step: 6
Re-using DM from previous geometries...
Number of DMs in history: 1
DM extrapolation coefficients:
DM extrapolation coefficients:
1 1.00000
New DM after history re-use:
<dSpData2D:SpM extrapolated using coords
@ -3525,7 +3525,7 @@ Target enthalpy (eV/cell) -2887.7640
moments: Magnetic moments from orbital angular momenta:
Species: Fe
Species: Fe
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -3584,7 +3584,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
6 Total 0.038 0.000 -0.000 0.038
Species: Ge
Species: Ge
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -3605,7 +3605,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
3 Total 0.045 -0.000 0.000 -0.045
Species: Te
Species: Te
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -3647,7 +3647,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
mulliken: Atomic and Orbital Populations:
Species: Fe
Species: Fe
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -3706,7 +3706,7 @@ Atom Orb Charge Spin Svec
Total 24.94861 5.63367 -0.000 0.000 5.634
Species: Ge
Species: Ge
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -3729,7 +3729,7 @@ Atom Orb Charge Spin Svec
Total 28.13607 5.48673 -0.000 0.000 5.487
Species: Te
Species: Te
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -3771,7 +3771,7 @@ Total 40.00000 5.21162 -0.000 0.000 5.212
Begin CG opt. move = 6
====================================
outcoor: Atomic coordinates (fractional):
outcoor: Atomic coordinates (fractional):
0.66667265 0.33332680 0.64111348 3 1 Te
0.66667265 0.33332680 0.35888662 3 2 Te
0.33331800 0.66668232 0.50000004 2 3 Ge
@ -3798,7 +3798,7 @@ refcount: 1>
new_DM -- step: 7
Re-using DM from previous geometries...
Number of DMs in history: 1
DM extrapolation coefficients:
DM extrapolation coefficients:
1 1.00000
New DM after history re-use:
<dSpData2D:SpM extrapolated using coords
@ -3974,7 +3974,7 @@ Target enthalpy (eV/cell) -2887.7677
moments: Magnetic moments from orbital angular momenta:
Species: Fe
Species: Fe
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -4033,7 +4033,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
6 Total 0.040 -0.000 0.000 0.040
Species: Ge
Species: Ge
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -4054,7 +4054,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
3 Total 0.046 -0.000 -0.000 -0.046
Species: Te
Species: Te
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -4096,7 +4096,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
mulliken: Atomic and Orbital Populations:
Species: Fe
Species: Fe
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -4155,7 +4155,7 @@ Atom Orb Charge Spin Svec
Total 24.92888 5.67926 -0.000 0.000 5.679
Species: Ge
Species: Ge
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -4178,7 +4178,7 @@ Atom Orb Charge Spin Svec
Total 28.12497 5.51147 -0.000 0.000 5.511
Species: Te
Species: Te
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -4220,7 +4220,7 @@ Total 40.00000 5.17734 -0.000 0.000 5.177
Begin CG opt. move = 7
====================================
outcoor: Atomic coordinates (fractional):
outcoor: Atomic coordinates (fractional):
0.66667229 0.33332719 0.64030278 3 1 Te
0.66667229 0.33332719 0.35969732 3 2 Te
0.33331891 0.66668139 0.50000004 2 3 Ge
@ -4247,7 +4247,7 @@ refcount: 1>
new_DM -- step: 8
Re-using DM from previous geometries...
Number of DMs in history: 1
DM extrapolation coefficients:
DM extrapolation coefficients:
1 1.00000
New DM after history re-use:
<dSpData2D:SpM extrapolated using coords
@ -4421,7 +4421,7 @@ Target enthalpy (eV/cell) -2887.7688
moments: Magnetic moments from orbital angular momenta:
Species: Fe
Species: Fe
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -4480,7 +4480,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
6 Total 0.043 -0.000 -0.000 0.043
Species: Ge
Species: Ge
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -4501,7 +4501,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
3 Total 0.046 0.000 -0.000 -0.046
Species: Te
Species: Te
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -4543,7 +4543,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
mulliken: Atomic and Orbital Populations:
Species: Fe
Species: Fe
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -4602,7 +4602,7 @@ Atom Orb Charge Spin Svec
Total 24.93523 5.65918 -0.000 0.000 5.659
Species: Ge
Species: Ge
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -4625,7 +4625,7 @@ Atom Orb Charge Spin Svec
Total 28.12904 5.49796 -0.000 0.000 5.498
Species: Te
Species: Te
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -4669,7 +4669,7 @@ cgvc: Finished line minimization 1. Mean atomic displacement = 0.0580
Begin CG opt. move = 8
====================================
outcoor: Atomic coordinates (fractional):
outcoor: Atomic coordinates (fractional):
0.66669105 0.33331661 0.63941912 3 1 Te
0.66669135 0.33331661 0.36057985 3 2 Te
0.33344392 0.66652517 0.50000010 2 3 Ge
@ -4696,7 +4696,7 @@ refcount: 1>
new_DM -- step: 9
Re-using DM from previous geometries...
Number of DMs in history: 1
DM extrapolation coefficients:
DM extrapolation coefficients:
1 1.00000
New DM after history re-use:
<dSpData2D:SpM extrapolated using coords
@ -4870,7 +4870,7 @@ Target enthalpy (eV/cell) -2887.7399
moments: Magnetic moments from orbital angular momenta:
Species: Fe
Species: Fe
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -4929,7 +4929,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
6 Total 0.031 0.000 -0.000 0.031
Species: Ge
Species: Ge
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -4950,7 +4950,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
3 Total 0.044 0.000 -0.000 -0.044
Species: Te
Species: Te
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -4992,7 +4992,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
mulliken: Atomic and Orbital Populations:
Species: Fe
Species: Fe
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -5051,7 +5051,7 @@ Atom Orb Charge Spin Svec
Total 24.98627 5.61671 0.000 -0.000 5.617
Species: Ge
Species: Ge
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -5074,7 +5074,7 @@ Atom Orb Charge Spin Svec
Total 28.16844 5.46830 0.000 -0.000 5.468
Species: Te
Species: Te
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -5116,7 +5116,7 @@ Total 40.00000 5.24200 0.000 -0.000 5.242
Begin CG opt. move = 9
====================================
outcoor: Atomic coordinates (fractional):
outcoor: Atomic coordinates (fractional):
0.66667360 0.33332645 0.64024103 3 1 Te
0.66667363 0.33332645 0.35975899 3 2 Te
0.33332764 0.66667048 0.50000004 2 3 Ge
@ -5143,7 +5143,7 @@ refcount: 1>
new_DM -- step: 10
Re-using DM from previous geometries...
Number of DMs in history: 1
DM extrapolation coefficients:
DM extrapolation coefficients:
1 1.00000
New DM after history re-use:
<dSpData2D:SpM extrapolated using coords
@ -5319,7 +5319,7 @@ Target enthalpy (eV/cell) -2887.7691
moments: Magnetic moments from orbital angular momenta:
Species: Fe
Species: Fe
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -5378,7 +5378,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
6 Total 0.041 0.000 -0.000 0.041
Species: Ge
Species: Ge
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -5399,7 +5399,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
3 Total 0.046 0.000 0.000 -0.046
Species: Te
Species: Te
Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
----------------------------------------------------------------------------------------------------
@ -5441,7 +5441,7 @@ Atom Orb sqrt(<L>^2) <(Lx,Ly,Lz)>
mulliken: Atomic and Orbital Populations:
Species: Fe
Species: Fe
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -5500,7 +5500,7 @@ Atom Orb Charge Spin Svec
Total 24.93834 5.67564 -0.000 0.000 5.676
Species: Ge
Species: Ge
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -5523,7 +5523,7 @@ Atom Orb Charge Spin Svec
Total 28.13105 5.51515 -0.000 0.000 5.515
Species: Te
Species: Te
Atom Orb Charge Spin Svec
----------------------------------------------------------------
@ -5561,7 +5561,7 @@ Atom Orb Charge Spin Svec
Total 40.00000 5.20655 -0.000 0.000 5.207
outcoor: Relaxed atomic coordinates (fractional):
outcoor: Relaxed atomic coordinates (fractional):
0.66667360 0.33332645 0.64024103 3 1 Te
0.66667363 0.33332645 0.35975899 3 2 Te
0.33332764 0.66667048 0.50000004 2 3 Ge
@ -5569,7 +5569,7 @@ outcoor: Relaxed atomic coordinates (fractional):
-0.00000130 0.00000127 0.43327268 1 5 Fe
0.66666126 0.33334048 0.49999993 1 6 Fe
coxmol: Writing XMOL coordinates into file Fe3GeTe2.xyz
coxmol: Writing XMOL coordinates into file Fe3GeTe2.xyz
siesta: Eigenvalues (eV):
ik = 1

@ -72,4 +72,3 @@ Tot.tot: total CPU time in all programs in one node
Nod.avg: average calculation time in one program across nodes
Nod.max: maximum calculation time in one program across nodes
Calculation time: CPU time excluding communications

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -50,18 +50,18 @@ WriteOrbMom T
# --------------
# XC
# --------------
xc.functional GGA
xc.authors PBE
xc.functional GGA
xc.authors PBE
# --------------
# GRID
# --------------
MeshCutoff 1000. Ry
GridCellSampling [ 2 2 2 ]
GridCellSampling [ 2 2 2 ]
# --------------
# Solution Method
# --------------
SolutionMethod diagon
ElectronicTemperature 0.1 K
ElectronicTemperature 0.1 K
# --------------
# SCF
# --------------

@ -72,4 +72,3 @@ Tot.tot: total CPU time in all programs in one node
Nod.avg: average calculation time in one program across nodes
Nod.max: maximum calculation time in one program across nodes
Calculation time: CPU time excluding communications

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -1,5 +1,5 @@
SystemName Fe3GeTe2
SystemLabel Fe3GeTe2
SystemName Fe3GeTe2
SystemLabel Fe3GeTe2
MPI.Nprocs.SIESTA 20 # default value
SpinPolarized F # default value
NonCollinearSpin F # default value
@ -10,7 +10,7 @@ SpinOrbit F # default value
#:defined? NonCollinearSpin F
#:block? SpinOrbit F
#:defined? SpinOrbit F
Spin spin-orbit
Spin spin-orbit
DebugObjects.Node 0 # default value
DebugObjects F # default value
XML.Write F # default value
@ -20,8 +20,8 @@ UseTreeTimer F # default value
timing-split-scf-steps F # default value
alloc_report_level 0 # default value
alloc_report_threshold 0.000000000 # default value
xc.functional GGA
xc.authors PBE
xc.functional GGA
xc.authors PBE
MM.Cutoff 30.00000000 Bohr # default value
MM.UnitsEnergy eV # default value
MM.UnitsDistance Ang # default value
@ -70,10 +70,10 @@ DFTU.FirstIteration F # default value
FilterCutoff 0.000000000 Ry # default value
FilterTol 0.000000000 Ry # default value
keep-npotu-bug F # default value
spin-orbit-strength 1.000000000
spin-orbit-strength 1.000000000
KB.Rmax 6.000000000 Bohr # default value
PAO.EnergyShift 0.1000000000E-02 Ry
# above item originally: PAO.EnergyShift 0.1000000000E-02 Ry
# above item originally: PAO.EnergyShift 0.1000000000E-02 Ry
PAO.SplitTailNorm F # default value
PAO.FixSplitTable F # default value
PAO.NewSplitCode F # default value
@ -92,10 +92,10 @@ PCC.Filter F # default value
FilterCutoff 0.000000000 Ry # default value
FilterTol 0.000000000 Ry # default value
keep-npotu-bug F # default value
spin-orbit-strength 1.000000000
spin-orbit-strength 1.000000000
KB.Rmax 6.000000000 Bohr # default value
PAO.EnergyShift 0.1000000000E-02 Ry
# above item originally: PAO.EnergyShift 0.1000000000E-02 Ry
# above item originally: PAO.EnergyShift 0.1000000000E-02 Ry
PAO.SplitTailNorm F # default value
PAO.FixSplitTable F # default value
PAO.NewSplitCode F # default value
@ -112,10 +112,10 @@ Vna.Filter F # default value
FilterCutoff 0.000000000 Ry # default value
FilterTol 0.000000000 Ry # default value
keep-npotu-bug F # default value
spin-orbit-strength 1.000000000
spin-orbit-strength 1.000000000
KB.Rmax 6.000000000 Bohr # default value
PAO.EnergyShift 0.1000000000E-02 Ry
# above item originally: PAO.EnergyShift 0.1000000000E-02 Ry
# above item originally: PAO.EnergyShift 0.1000000000E-02 Ry
PAO.SplitTailNorm F # default value
PAO.FixSplitTable F # default value
PAO.NewSplitCode F # default value
@ -134,13 +134,13 @@ Atom-Setup-Only F # default value
UseStructFile F # default value
MD.UseStructFile F # default value
LatticeConstant 1.889726878 Bohr
# above item originally: LatticeConstant 1.000000000 Ang
# above item originally: LatticeConstant 1.000000000 Ang
#:block? LatticeParameters T
#:block? LatticeVectors F
%block LatticeParameters
3.791 3.791 20.57 90.0 90.0 120.0
%endblock LatticeParameters
AtomicCoordinatesFormat Fractional
AtomicCoordinatesFormat Fractional
NumberOfAtoms 6
#:block? AtomicCoordinatesOrigin F
#:defined? AtomicCoordinatesOrigin F
@ -162,11 +162,11 @@ ZM.CalcAllForces F # default value
MD.UseSaveXV T
MD.UseSaveZM F # default value
WriteCoorInitial T # default value
MD.TypeOfRun CG
MD.TypeOfRun CG
MD.TypeOfRun CG
MD.TypeOfRun CG
MD.InitialTimeStep 1 # default value
MD.FinalTimeStep 1 # default value
MD.TypeOfRun CG
MD.TypeOfRun CG
MaxBondDistance 6.000000000 Bohr # default value
Output-Structure-Only F # default value
WriteCoorXmol T
@ -184,7 +184,7 @@ WriteVoronoiPop F # default value
PartialChargesAtEveryGeometry F # default value
PartialChargesAtEveryScfStep F # default value
MeshCutoff 1000.000000 Ry
# above item originally: MeshCutoff 1000.000000 Ry
# above item originally: MeshCutoff 1000.000000 Ry
NetCharge 0.000000000 # default value
MinSCFIterations 0 # default value
MaxSCFIterations 1000
@ -198,7 +198,7 @@ SCF.MustConverge T # default value
TS.MixH T # default value
MixHamiltonian T # default value
MixCharge F # default value
SCF.Mix Hamiltonian
SCF.Mix Hamiltonian
Compat-pre-v4-DM-H F # default value
SCF.MixAfterConvergence F # default value
SCF.Recompute-H-After-Scf F # default value
@ -224,7 +224,7 @@ SCF.EDM.Converge F # default value
SCF.EDM.Tolerance 0.7349806700E-04 Ry # default value
SCF.H.Converge T # default value
SCF.H.Tolerance 0.7349798845E-05 Ry
# above item originally: SCF.H.Tolerance 0.1000000000E-03 eV
# above item originally: SCF.H.Tolerance 0.1000000000E-03 eV
DM.RequireEnergyConvergence F # default value
SCF.FreeE.Converge F # default value
DM.EnergyTolerance 0.7349806700E-05 Ry # default value
@ -234,9 +234,9 @@ SCF.MonitorForces F # default value
UseSaveData F # default value
DM.UseSaveDM T
NeglNonOverlapInt F # default value
SolutionMethod diagon
SolutionMethod diagon
ElectronicTemperature 0.6333564230E-06 Ry
# above item originally: ElectronicTemperature 0.1000000000 K
# above item originally: ElectronicTemperature 0.1000000000 K
FixSpin F # default value
Spin.Fix F # default value
SOC.Split.SR.SO T # default value
@ -267,7 +267,7 @@ TDED.Inverse.Linear T # default value
TDED.WF.Save F # default value
MD.VariableCell F
compat-pre-v4-dynamics F # default value
MD.TypeOfRun CG
MD.TypeOfRun CG
MD.UseSaveCG T
Optim.Broyden F # default value
#:block? Optim.Broyden F
@ -275,12 +275,12 @@ Optim.Broyden F # default value
MD.NumCGsteps 0 # default value
MD.Steps 1000
MD.MaxCGDispl 0.9448634389E-01 Bohr
# above item originally: MD.MaxCGDispl 0.5000000000E-01 Ang
# above item originally: MD.MaxCGDispl 0.5000000000E-01 Ang
MD.MaxDispl 0.9448634389E-01 Bohr # default value
MD.MaxForceTol 0.1944674385E-03 Ry/Bohr
# above item originally: MD.MaxForceTol 0.5000000000E-02 eV/Ang
# above item originally: MD.MaxForceTol 0.5000000000E-02 eV/Ang
MD.MaxStressTol 0.6797726840E-06 Ry/Bohr**3
# above item originally: MD.MaxStressTol 0.1000000000E-01 GPa
# above item originally: MD.MaxStressTol 0.1000000000E-01 GPa
GeometryMustConverge F # default value
MD.InitialTimeStep 1 # default value
#:defined? MD.Steps T
@ -301,7 +301,7 @@ MD.FCfirst 1 # default value
MD.FClast 6 # default value
UseSpatialDecomposition F # default value
UseDomainDecomposition F # default value
SCF.Mix.Spin all
SCF.Mix.Spin all
Mixer.Debug F # default value
Mixer.Debug.MPI F # default value
DM.NumberPulay 2 # default value
@ -312,12 +312,12 @@ DM.KickMixingWeight 0.5000000000 # default value
SCF.LinearMixingAfterPulay F # default value
SCF.MixingWeightAfterPulay 0.2500000000 # default value
SCF.Mixer.History 6
SCF.Mixer.Weight 0.1000000000
SCF.Mixer.Weight 0.1000000000
SCF.Mixer.Kick 20
SCF.Mixer.Kick.Weight 0.5000000000 # default value
SCF.Mixer.Restart 0 # default value
SCF.Mixer.Restart.Save 1 # default value
SCF.Mixer.Method Pulay
SCF.Mixer.Method Pulay
SCF.Mixer.Variant original # default value
SCF.Mixer.Linear.After -1 # default value
SCF.Mixer.Linear.After.Weight 0.2500000000 # default value
@ -460,10 +460,10 @@ TimeReversalSymmetryForKpoints F # default value
#:defined? TS.kgrid.File F
LUA.Interactive F # default value
LUA.Script # default value
AtomicCoordinatesFormat Fractional
AtomicCoordinatesFormat Fractional
AtomCoorFormatOut Fractional # default value
LatticeConstant 1.889726878 Bohr
# above item originally: LatticeConstant 1.000000000 Ang
# above item originally: LatticeConstant 1.000000000 Ang
debug-folding F # default value
Save.Overlap.Gradient F # default value
Sonly F # default value

@ -0,0 +1,47 @@
InputFile /Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf
OutputFile ./Fe3GeTe2_notebook
ScfOrientation [ 0 0 1 ]
%block XCF_Rotation
1 0 0
0 1 0
0 0 1
%endblock XCFRotation
%block XCF_Rotation
0 1 0
1 0 0
0 0 1
%endblock XCFRotation
%block XCF_Rotation
0 0 1
1 0 0
0 1 0
%endblock XCFRotation
%block MagneticEntites # atom index and orbital index
3 2
4 2
5 2
%endblock MagneticEntites
%Pairsblock # MagneticEntites index ai and aj, supercell offset
0 1 0 0 0
0 2 0 0 0
1 2 0 0 0
0 2 -1 -1 0
1 2 -1 -1 0
0 2 -1 0 0
1 2 -1 0 0
1 2 -2 0 0
1 2 -3 0 0
%endPairsblock
INTEGRAL.Kset 3
INTEGRAL.Kdirs xy
INTEGRAL.Ebot -13
INTEGRAL.Eset 300
INTEGRAL.Esetp 1000

@ -3,18 +3,18 @@ Pairs integrated.
Magnetic parameters calculated.
##################################################################### GROGU OUTPUT #############################################################################
================================================================================================================================================================
Input file:
Input file:
/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf
Output file:
Output file:
./Fe3GeTe2_notebook.pickle
Number of nodes in the parallel cluster: 1
================================================================================================================================================================
Cell [Ang]:
Cell [Ang]:
[[ 3.79100000e+00 0.00000000e+00 0.00000000e+00]
[-1.89550000e+00 3.28310231e+00 0.00000000e+00]
[ 1.25954923e-15 2.18160327e-15 2.05700000e+01]]
================================================================================================================================================================
DFT axis:
DFT axis:
[0 0 1]
Quantization axis and perpendicular rotation directions:
[1 0 0] --» [array([0, 1, 0]), array([0, 0, 1])]
@ -28,7 +28,7 @@ Ebot: -13
Eset: 300
Esetp: 1000
================================================================================================================================================================
Atomic information:
Atomic information:
----------------------------------------------------------------------------------------------------------------------------------------------------------------
[atom index]Element(orbitals) x [Ang] y [Ang] z [Ang] Sx Sy Sz Q Lx Ly Lz Jx Jy Jz
----------------------------------------------------------------------------------------------------------------------------------------------------------------
@ -52,7 +52,7 @@ Symmetric-anisotropy: [ 7.51357435e-02 -7.11950712e-07 3.59136771e-08 -7.11950
J: [ 3.81154345e+00 -7.11950712e-07 3.59136771e-08 -7.11950712e-07
3.81154015e+00 3.13082991e-08 3.59136771e-08 3.13082991e-08
3.58613951e+00]
Energies for debugging:
Energies for debugging:
array([[ 3.58613658e-03, 1.50649068e-07, -1.50711685e-07,
3.58823154e-03],
[ 3.58614245e-03, -6.66917293e-09, 6.59734558e-09,
@ -72,7 +72,7 @@ Symmetric-anisotropy: [ 0.00046905 0.00297291 -0.00117676 0.00297291 -0.00302
J: [ 1.36697602e+00 2.97290780e-03 -1.17675699e-03 2.97290780e-03
1.36348532e+00 -6.33095832e-04 -1.17675699e-03 -6.33095832e-04
1.36905957e+00]
Energies for debugging:
Energies for debugging:
array([[ 1.36869655e-03, 6.07996330e-05, -5.95334413e-05,
1.36354141e-03],
[ 1.36942260e-03, 1.05300334e-04, -1.02946820e-04,
@ -92,7 +92,7 @@ Symmetric-anisotropy: [ 0.0004341 0.00297286 0.00136618 0.00297286 -0.00305
J: [1.36699315e+00 2.97285931e-03 1.36618160e-03 2.97285931e-03
1.36350704e+00 8.31592395e-04 1.36618160e-03 8.31592395e-04
1.36917697e+00]
Energies for debugging:
Energies for debugging:
array([[ 1.36884061e-03, -6.09739008e-05, 5.93107160e-05,
1.36356111e-03],
[ 1.36951332e-03, -1.05470361e-04, 1.02737998e-04,
@ -113,7 +113,7 @@ Symmetric-anisotropy: [-4.78793224e-03 -5.40296355e-06 4.35410484e-06 -5.40296
J: [ 1.36183963e+00 -5.40296355e-06 4.35410484e-06 -5.40296355e-06
1.36880565e+00 1.46954942e-03 4.35410484e-06 1.46954942e-03
1.36923739e+00]
Energies for debugging:
Energies for debugging:
array([[ 1.36990885e-03, -1.21632799e-04, 1.18693700e-04,
1.36893010e-03],
[ 1.36856594e-03, -8.08368896e-10, -7.89984078e-09,
@ -134,7 +134,7 @@ Symmetric-anisotropy: [-4.76680949e-03 -5.40568363e-06 4.15669294e-06 -5.40568
J: [ 1.36184799e+00 -5.40568363e-06 4.15669294e-06 -5.40568363e-06
1.36881823e+00 -1.46945257e-03 4.15669294e-06 -1.46945257e-03
1.36917819e+00]
Energies for debugging:
Energies for debugging:
array([[ 1.36992100e-03, 1.21632465e-04, -1.18693560e-04,
1.36894224e-03],
[ 1.36843538e-03, 2.07139714e-09, -1.03847830e-08,
@ -154,7 +154,7 @@ Symmetric-anisotropy: [ 0.00044657 -0.00296955 0.00117251 -0.00296955 -0.00303
J: [ 1.36681306e+00 -2.96954847e-03 1.17250768e-03 -2.96954847e-03
1.36332921e+00 -8.31759183e-04 1.17250768e-03 -8.31759183e-04
1.36895719e+00]
Energies for debugging:
Energies for debugging:
array([[ 1.36864715e-03, 6.09736506e-05, -5.93101323e-05,
1.36338366e-03],
[ 1.36926723e-03, -1.05302174e-04, 1.02957159e-04,
@ -174,7 +174,7 @@ Symmetric-anisotropy: [ 0.00045093 -0.00296959 -0.00137041 -0.00296959 -0.00302
J: [ 1.36680784e+00 -2.96958730e-03 -1.37041361e-03 -2.96958730e-03
1.36333151e+00 6.33143106e-04 -1.37041361e-03 6.33143106e-04
1.36893138e+00]
Energies for debugging:
Energies for debugging:
array([[ 1.36852649e-03, -6.08031071e-05, 5.95368209e-05,
1.36338712e-03],
[ 1.36933627e-03, 1.05475941e-04, -1.02735114e-04,
@ -195,7 +195,7 @@ Symmetric-anisotropy: [ 1.71572275e-04 -1.64462154e-04 -6.17520368e-05 -1.64462
J: [-3.30303816e-03 -1.64462154e-04 -6.17520368e-05 -1.64462154e-04
-3.42142919e-03 2.26715191e-04 -6.17520368e-05 2.26715191e-04
-3.69936395e-03]
Energies for debugging:
Energies for debugging:
array([[-3.70537194e-06, -5.86835019e-06, 5.41491981e-06,
-3.68176164e-06],
[-3.69335596e-06, -1.84488317e-06, 1.96838725e-06,
@ -214,7 +214,7 @@ Symmetric-anisotropy: [ 0.00095486 -0.00049048 -0.00010491 -0.00049048 -0.00065
-0.00010491 -0.00015335 -0.00030483]
J: [ 0.00652769 -0.00049048 -0.00010491 -0.00049048 0.0049228 -0.00015335
-0.00010491 -0.00015335 0.00526801]
Energies for debugging:
Energies for debugging:
array([[ 5.39229066e-06, -2.91508841e-06, 3.22178614e-06,
4.70355358e-06],
[ 5.14372081e-06, -3.12647464e-06, 3.33630142e-06,
@ -227,7 +227,7 @@ Test J_xx = E(y,z) = E(z,y)
6.553735898142947e-06 6.501653779660145e-06
================================================================================================================================================================
Runtime information:
Runtime information:
Total runtime: 350.25778825 s
----------------------------------------------------------------------------------------------------------------------------------------------------------------
Initial setup: 0.13192529200000003 s
@ -236,4 +236,4 @@ Pair and site datastructure creatrions: 0.060 s
k set cration and distribution: 0.045 s
Rotating XC potential: 0.247 s
Greens function inversion: 349.010 s
Calculate energies and magnetic components: 0.248 s
Calculate energies and magnetic components: 0.248 s

File diff suppressed because it is too large Load Diff

@ -1,61 +1,52 @@
import pickle
import warnings
from sys import getsizeof
# Copyright (c) [2024] [Daniel Pozsar]
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from timeit import default_timer as timer
import numpy as np
import sisl
import sisl.viz
from mpi4py import MPI
from numpy.linalg import inv
from tqdm import tqdm
from grogu_magn.utils import *
"""
# Some input parsing
parser = argparse.ArgumentParser()
parser.add_argument('--kset' , dest = 'kset' , default = 2 , type=int , help = 'k-space resolution of Jij calculation')
parser.add_argument('--kdirs' , dest = 'kdirs' , default = 'xyz' , help = 'Definition of k-space dimensionality')
parser.add_argument('--eset' , dest = 'eset' , default = 42 , type=int , help = 'Number of energy points on the contour')
parser.add_argument('--eset-p' , dest = 'esetp' , default = 10 , type=int , help = 'Parameter tuning the distribution on the contour')
parser.add_argument('--input' , dest = 'infile' , required = True , help = 'Input file name')
parser.add_argument('--output' , dest = 'outfile', required = True , help = 'Output file name')
parser.add_argument('--Ebot' , dest = 'Ebot' , default = -20.0 , type=float, help = 'Bottom energy of the contour')
parser.add_argument('--npairs' , dest = 'npairs' , default = 1 , type=int , help = 'Number of unitcell pairs in each direction for Jij calculation')
parser.add_argument('--adirs' , dest = 'adirs' , default = False , help = 'Definition of pair directions')
parser.add_argument('--use-tqdm', dest = 'usetqdm', default = 'not' , help = 'Use tqdm for progressbars or not')
parser.add_argument('--cutoff' , dest = 'cutoff' , default = 100.0 , type=float, help = 'Real space cutoff for pair generation in Angs')
parser.add_argument('--pairfile', dest = 'pairfile', default = False , help = 'File to read pair information')
args = parser.parse_args()
"""
# runtime information
times = dict()
times["start_time"] = timer()
################################################################################
#################################### INPUT #####################################
################################################################################
import warnings
from sys import getsizeof
import sisl
from mpi4py import MPI
from src.grogu_magn import *
# input output stuff
######################################################################
######################################################################
######################################################################
path = (
"/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf"
)
outfile = "./Fe3GeTe2_benchmark_on_15k_300eset_orb_test3"
# this information needs to be given at the input!!
scf_xcf_orientation = np.array([0, 0, 1]) # z
# list of reference directions for around which we calculate the derivatives
# o is the quantization axis, v and w are two axes perpendicular to it
# at this moment the user has to supply o,v,w on the input.
# we can have some default for this
ref_xcf_orientations = [
dict(o=np.array([1, 0, 0]), vw=[np.array([0, 1, 0]), np.array([0, 0, 1])]),
dict(o=np.array([0, 1, 0]), vw=[np.array([1, 0, 0]), np.array([0, 0, 1])]),
dict(o=np.array([0, 0, 1]), vw=[np.array([1, 0, 0]), np.array([0, 1, 0])]),
]
outfile = "./Fe3GeTe2_notebook"
magnetic_entities = [
dict(atom=3, l=2),
dict(atom=4, l=2),
dict(atom=5, l=1),
dict(atom=5, l=2),
]
pairs = [
dict(ai=0, aj=1, Ruc=np.array([0, 0, 0])),
@ -68,15 +59,12 @@ pairs = [
dict(ai=1, aj=2, Ruc=np.array([-2, 0, 0])),
dict(ai=1, aj=2, Ruc=np.array([-3, 0, 0])),
]
# Brilloun zone sampling and Green function contour integral
kset = 15
kdirs = "xy"
ebot = -13
eset = 300
esetp = 1000
################################################################################
#################################### INPUT #####################################
################################################################################
simulation_parameters = default_args
######################################################################
######################################################################
######################################################################
# MPI parameters
comm = MPI.COMM_WORLD
@ -84,28 +72,37 @@ size = comm.Get_size()
rank = comm.Get_rank()
root_node = 0
# check versions for debugging
if rank == root_node:
try:
print(sisl.__version__)
except:
print("sisl version unknown.")
try:
print(np.__version__)
except:
print("numpy version unknown.")
# rename outfile
if not outfile.endswith(".pickle"):
outfile += ".pickle"
simulation_parameters = dict(
path=path,
outpath=outfile,
scf_xcf_orientation=scf_xcf_orientation,
ref_xcf_orientations=ref_xcf_orientations,
kset=kset,
kdirs=kdirs,
ebot=ebot,
eset=eset,
esetp=esetp,
parallel_size=size,
)
if not simulation_parameters["outfile"].endswith(".pickle"):
simulation_parameters["outfile"] += ".pickle"
# if ebot is not given put it 0.1 eV under the smallest energy
if simulation_parameters["ebot"] is None:
try:
eigfile = simulation_parameters["infile"][:-3] + "EIG"
simulation_parameters["ebot"] = read_siesta_emin(eigfile) - 0.1
except:
print("Could not determine ebot.")
print("Parameter was not given and .EIG file was not found.")
# digestion of the input
# read sile
fdf = sisl.get_sile(path)
fdf = sisl.get_sile(simulation_parameters["infile"])
# read in hamiltonian
dh = fdf.read_hamiltonian()
# read unit cell vectors
simulation_parameters["cell"] = fdf.read_geometry().cell
# unit cell index
@ -119,60 +116,11 @@ if rank == root_node:
"================================================================================================================================================================"
)
NO = dh.no # shorthand for number of orbitals in the unit cell
# preprocessing Hamiltonian and overlap matrix elements
h11 = dh.tocsr(dh.M11r)
h11 += dh.tocsr(dh.M11i) * 1.0j
h11 = h11.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
h22 = dh.tocsr(dh.M22r)
h22 += dh.tocsr(dh.M22i) * 1.0j
h22 = h22.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
h12 = dh.tocsr(dh.M12r)
h12 += dh.tocsr(dh.M12i) * 1.0j
h12 = h12.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
h21 = dh.tocsr(dh.M21r)
h21 += dh.tocsr(dh.M21i) * 1.0j
h21 = h21.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
sov = (
dh.tocsr(dh.S_idx)
.toarray()
.reshape(NO, dh.n_s, NO)
.transpose(0, 2, 1)
.astype("complex128")
)
# reformat Hamltonian and Overlap matrix for manipulations
hh, ss, NO = build_hh_ss(dh)
# Reorganization of Hamiltonian and overlap matrix elements to SPIN BOX representation
U = np.vstack(
[np.kron(np.eye(NO, dtype=int), [1, 0]), np.kron(np.eye(NO, dtype=int), [0, 1])]
)
# This is the permutation that transforms ud1ud2 to u12d12
# That is this transforms FROM SPIN BOX to ORBITAL BOX => U
# the inverse transformation is U.T u12d12 to ud1ud2
# That is FROM ORBITAL BOX to SPIN BOX => U.T
# From now on everything is in SPIN BOX!!
hh, ss = np.array(
[
U.T @ np.block([[h11[:, :, i], h12[:, :, i]], [h21[:, :, i], h22[:, :, i]]]) @ U
for i in range(dh.lattice.nsc.prod())
]
), np.array(
[
U.T
@ np.block([[sov[:, :, i], sov[:, :, i] * 0], [sov[:, :, i] * 0, sov[:, :, i]]])
@ U
for i in range(dh.lattice.nsc.prod())
]
)
# symmetrizing Hamiltonian and overlap matrix to make them hermitian
# symmetrizing Hamiltonian and Overlap matrix to make them hermitian
for i in range(dh.lattice.sc_off.shape[0]):
j = dh.lattice.sc_index(-dh.lattice.sc_off[i])
h1, h1d = hh[i], hh[j]
@ -194,9 +142,9 @@ XCF = np.array(
np.array([f["y"] / 2 for f in traced]),
np.array([f["z"] / 2 for f in traced]),
]
) # equation 77
)
# Check if exchange field has scalar part
# check if exchange field has scalar part
max_xcfs = abs(np.array(np.array([f["c"] / 2 for f in traced]))).max()
if max_xcfs > 1e-12:
warnings.warn(
@ -212,104 +160,10 @@ if rank == root_node:
"================================================================================================================================================================"
)
# for every site we have to store 3 Greens function (and the associated _tmp-s) in the 3 reference directions
for mag_ent in magnetic_entities:
parsed = parse_magnetic_entity(dh, **mag_ent) # parse orbital indexes
mag_ent["orbital_indeces"] = parsed
mag_ent["spin_box_indeces"] = blow_up_orbindx(parsed) # calculate spin box indexes
# if orbital is not set use all
if "l" not in mag_ent.keys():
mag_ent["l"] = "all"
if isinstance(mag_ent["atom"], int):
mag_ent["tags"] = [
f"[{mag_ent['atom']}]{dh.atoms[mag_ent['atom']].tag}({mag_ent['l']})"
]
mag_ent["xyz"] = [dh.xyz[mag_ent["atom"]]]
if isinstance(mag_ent["atom"], list):
mag_ent["tags"] = []
mag_ent["xyz"] = []
# iterate over atoms
for atom_idx in mag_ent["atom"]:
mag_ent["tags"].append(
f"[{atom_idx}]{dh.atoms[atom_idx].tag}({mag_ent['l']})"
)
mag_ent["xyz"].append(dh.xyz[atom_idx])
# calculate size for Greens function generation
spin_box_shape = len(mag_ent["spin_box_indeces"])
mag_ent["energies"] = [] # we will store the second order energy derivations here
# These will be the perturbed potentials from eq. 100
mag_ent["Vu1"] = [] # so they are independent in memory
mag_ent["Vu2"] = []
mag_ent["Gii"] = [] # Greens function
mag_ent["Gii_tmp"] = [] # Greens function for parallelization
for i in ref_xcf_orientations:
# Rotations for every quantization axis
mag_ent["Vu1"].append([])
mag_ent["Vu2"].append([])
# Greens functions for every quantization axis
mag_ent["Gii"].append(
np.zeros((eset, spin_box_shape, spin_box_shape), dtype="complex128")
)
mag_ent["Gii_tmp"].append(
np.zeros((eset, spin_box_shape, spin_box_shape), dtype="complex128")
)
# for every site we have to store 2x3 Greens function (and the associated _tmp-s)
# in the 3 reference directions, because G_ij and G_ji are both needed
for pair in pairs:
# calculate distance
xyz_ai = magnetic_entities[pair["ai"]]["xyz"]
xyz_aj = magnetic_entities[pair["aj"]]["xyz"]
xyz_aj = xyz_aj + pair["Ruc"] @ simulation_parameters["cell"]
pair["dist"] = np.linalg.norm(xyz_ai - xyz_aj)
# calculate size for Greens function generation
spin_box_shape_i = len(magnetic_entities[pair["ai"]]["spin_box_indeces"])
spin_box_shape_j = len(magnetic_entities[pair["aj"]]["spin_box_indeces"])
pair["tags"] = []
for mag_ent in [magnetic_entities[pair["ai"]], magnetic_entities[pair["aj"]]]:
tag = ""
# get atoms of magnetic entity
atoms_idx = mag_ent["atom"]
orbitals = mag_ent["l"]
# if magnetic entity contains one atoms
if isinstance(atoms_idx, int):
tag += f"[{atoms_idx}]{dh.atoms[atoms_idx].tag}({orbitals})"
# if magnetic entity contains more than one atoms
if isinstance(atoms_idx, list):
# iterate over atoms
atom_group = "{"
for atom_idx in atoms_idx:
atom_group += f"[{atom_idx}]{dh.atoms[atom_idx].tag}({orbitals})--"
# end {} of the atoms in the magnetic entity
tag += atom_group[:-2] + "}"
pair["tags"].append(tag)
pair["energies"] = [] # we will store the second order energy derivations here
pair["Gij"] = [] # Greens function
pair["Gji"] = []
pair["Gij_tmp"] = [] # Greens function for parallelization
pair["Gji_tmp"] = []
for i in ref_xcf_orientations:
# Greens functions for every quantization axis
pair["Gij"].append(
np.zeros((eset, spin_box_shape_i, spin_box_shape_j), dtype="complex128")
)
pair["Gij_tmp"].append(
np.zeros((eset, spin_box_shape_i, spin_box_shape_j), dtype="complex128")
)
pair["Gji"].append(
np.zeros((eset, spin_box_shape_j, spin_box_shape_i), dtype="complex128")
)
pair["Gji_tmp"].append(
np.zeros((eset, spin_box_shape_j, spin_box_shape_i), dtype="complex128")
)
# initialize pairs and magnetic entities based on input information
pairs, magnetic_entities = setup_pairs_and_magnetic_entities(
magnetic_entities, pairs, dh, simulation_parameters
)
if rank == root_node:
times["site_and_pair_dictionaries_time"] = timer()
@ -320,10 +174,15 @@ if rank == root_node:
"================================================================================================================================================================"
)
kset = make_kset(dirs=kdirs, NUMK=kset) # generate k space sampling
# generate k space sampling
kset = make_kset(
dirs=simulation_parameters["kdirs"], NUMK=simulation_parameters["kset"]
)
wkset = np.ones(len(kset)) / len(kset) # generate weights for k points
kpcs = np.array_split(kset, size) # split the k points based on MPI size
kpcs[root_node] = tqdm(kpcs[root_node], desc="k loop")
if tqdm_imported:
kpcs[root_node] = tqdm(kpcs[root_node], desc="k loop")
if rank == root_node:
times["k_set_time"] = timer()
@ -331,225 +190,3 @@ if rank == root_node:
print(
"================================================================================================================================================================"
)
# this will contain the three hamiltonians in the reference directions needed to calculate the energy variations upon rotation
hamiltonians = []
# iterate over the reference directions (quantization axes)
for i, orient in enumerate(ref_xcf_orientations):
# obtain rotated exchange field
R = RotMa2b(scf_xcf_orientation, orient["o"])
rot_XCF = np.einsum("ij,jklm->iklm", R, XCF)
rot_H_XCF = sum(
[np.kron(rot_XCF[i], tau) for i, tau in enumerate([tau_x, tau_y, tau_z])]
)
rot_H_XCF_uc = rot_H_XCF[uc_in_sc_idx]
# obtain total Hamiltonian with the rotated exchange field
rot_H = (
hTRS + rot_H_XCF
) # equation 76 #######################################################################################
hamiltonians.append(
dict(orient=orient["o"], H=rot_H)
) # store orientation and rotated Hamiltonian
# these are the rotations (for now) perpendicular to the quantization axis
for u in orient["vw"]:
Tu = np.kron(np.eye(NO, dtype=int), tau_u(u)) # section 2.H
Vu1 = 1j / 2 * commutator(rot_H_XCF_uc, Tu) # equation 100
Vu2 = 1 / 8 * commutator(commutator(Tu, rot_H_XCF_uc), Tu) # equation 100
for mag_ent in magnetic_entities:
idx = mag_ent["spin_box_indeces"]
# fill up the perturbed potentials (for now) based on the on-site projections
mag_ent["Vu1"][i].append(Vu1[:, idx][idx, :])
mag_ent["Vu2"][i].append(Vu2[:, idx][idx, :])
if rank == root_node:
times["reference_rotations_time"] = timer()
print(
f"Rotations done perpendicular to quantization axis. Elapsed time: {times['reference_rotations_time']} s"
)
print(
"================================================================================================================================================================"
)
if rank == root_node:
print("Starting matrix inversions")
print(f"Total number of k points: {kset.shape[0]}")
print(f"Number of energy samples per k point: {eset}")
print(f"Total number of directions: {len(hamiltonians)}")
print(
f"Total number of matrix inversions: {kset.shape[0] * len(hamiltonians) * eset}"
)
print(f"The shape of the Hamiltonian and the Greens function is {NO}x{NO}={NO*NO}")
# https://stackoverflow.com/questions/70746660/how-to-predict-memory-requirement-for-np-linalg-inv
# memory is O(64 n**2) for complex matrices
memory_size = getsizeof(hamiltonians[0]["H"].base) / 1024
print(
f"Memory taken by a single Hamiltonian is: {getsizeof(hamiltonians[0]['H'].base) / 1024} KB"
)
print(f"Expected memory usage per matrix inversion: {memory_size * 32} KB")
print(
f"Expected memory usage per k point for parallel inversion: {memory_size * len(hamiltonians) * eset * 32} KB"
)
print(
f"Expected memory usage on root node: {len(np.array_split(kset, size)[0]) * memory_size * len(hamiltonians) * eset * 32 / 1024} MB"
)
print(
"================================================================================================================================================================"
)
comm.Barrier()
# ----------------------------------------------------------------------
# make energy contour
# we are working in eV now !
# and sisl shifts E_F to 0 !
cont = make_contour(emin=ebot, enum=eset, p=esetp)
eran = cont.ze
# ----------------------------------------------------------------------
# sampling the integrand on the contour and the BZ
for k in kpcs[rank]:
wk = wkset[rank] # weight of k point in BZ integral
# iterate over reference directions
for i, hamiltonian_orientation in enumerate(hamiltonians):
# calculate Greens function
H = hamiltonian_orientation["H"]
HK, SK = hsk(H, ss, dh.sc_off, k)
# Gk = inv(SK * eran.reshape(eset, 1, 1) - HK)
# solve Greens function sequentially for the energies, because of memory bound
Gk = np.zeros(shape=(eset, HK.shape[0], HK.shape[1]), dtype="complex128")
for j in range(eset):
Gk[j] = inv(SK * eran[j] - HK)
# store the Greens function slice of the magnetic entities (for now) based on the on-site projections
for mag_ent in magnetic_entities:
mag_ent["Gii_tmp"][i] += (
Gk[:, mag_ent["spin_box_indeces"], :][:, :, mag_ent["spin_box_indeces"]]
* wk
)
for pair in pairs:
# add phase shift based on the cell difference
phase = np.exp(1j * 2 * np.pi * k @ pair["Ruc"].T)
# get the pair orbital sizes from the magnetic entities
ai = magnetic_entities[pair["ai"]]["spin_box_indeces"]
aj = magnetic_entities[pair["aj"]]["spin_box_indeces"]
# store the Greens function slice of the magnetic entities (for now) based on the on-site projections
pair["Gij_tmp"][i] += Gk[:, ai][..., aj] * phase * wk
pair["Gji_tmp"][i] += Gk[:, aj][..., ai] / phase * wk
# summ reduce partial results of mpi nodes
for i in range(len(hamiltonians)):
for mag_ent in magnetic_entities:
comm.Reduce(mag_ent["Gii_tmp"][i], mag_ent["Gii"][i], root=root_node)
for pair in pairs:
comm.Reduce(pair["Gij_tmp"][i], pair["Gij"][i], root=root_node)
comm.Reduce(pair["Gji_tmp"][i], pair["Gji"][i], root=root_node)
if rank == root_node:
times["green_function_inversion_time"] = timer()
print(
f"Calculated Greens functions. Elapsed time: {times['green_function_inversion_time']} s"
)
print(
"================================================================================================================================================================"
)
if rank == root_node:
# iterate over the magnetic entities
for tracker, mag_ent in enumerate(magnetic_entities):
# iterate over the quantization axes
for i, Gii in enumerate(mag_ent["Gii"]):
storage = []
# iterate over the first and second order local perturbations
for Vu1, Vu2 in zip(mag_ent["Vu1"][i], mag_ent["Vu2"][i]):
# The Szunyogh-Lichtenstein formula
traced = np.trace((Vu2 @ Gii + 0.5 * Gii @ Vu1 @ Gii), axis1=1, axis2=2)
# evaluation of the contour integral
storage.append(np.trapz(-1 / np.pi * np.imag(traced * cont.we)))
# fill up the magnetic entities dictionary with the energies
magnetic_entities[tracker]["energies"].append(storage)
# convert to np array
magnetic_entities[tracker]["energies"] = np.array(
magnetic_entities[tracker]["energies"]
)
print("Magnetic entities integrated.")
# iterate over the pairs
for tracker, pair in enumerate(pairs):
# iterate over the quantization axes
for i, (Gij, Gji) in enumerate(zip(pair["Gij"], pair["Gji"])):
site_i = magnetic_entities[pair["ai"]]
site_j = magnetic_entities[pair["aj"]]
storage = []
# iterate over the first order local perturbations in all possible orientations for the two sites
for Vui in site_i["Vu1"][i]:
for Vuj in site_j["Vu1"][i]:
# The Szunyogh-Lichtenstein formula
traced = np.trace((Vui @ Gij @ Vuj @ Gji), axis1=1, axis2=2)
# evaluation of the contour integral
storage.append(np.trapz(-1 / np.pi * np.imag(traced * cont.we)))
# fill up the pairs dictionary with the energies
pairs[tracker]["energies"].append(storage)
# convert to np array
pairs[tracker]["energies"] = np.array(pairs[tracker]["energies"])
print("Pairs integrated.")
# calculate magnetic parameters
for mag_ent in magnetic_entities:
Kxx, Kyy, Kzz, consistency = calculate_anisotropy_tensor(mag_ent)
mag_ent["K"] = np.array([Kxx, Kyy, Kzz]) * sisl.unit_convert("eV", "meV")
mag_ent["K_consistency"] = consistency
for pair in pairs:
J_iso, J_S, D, J = calculate_exchange_tensor(pair)
pair["J_iso"] = J_iso * sisl.unit_convert("eV", "meV")
pair["J_S"] = J_S * sisl.unit_convert("eV", "meV")
pair["D"] = D * sisl.unit_convert("eV", "meV")
pair["J"] = J * sisl.unit_convert("eV", "meV")
print("Magnetic parameters calculated.")
times["end_time"] = timer()
print(
"##################################################################### GROGU OUTPUT #############################################################################"
)
print_parameters(simulation_parameters)
print_atoms_and_pairs(magnetic_entities, pairs)
print_runtime_information(times)
# remove clutter from magnetic entities and pair information
for pair in pairs:
del pair["Gij"]
del pair["Gij_tmp"]
del pair["Gji"]
del pair["Gji_tmp"]
for mag_ent in magnetic_entities:
del mag_ent["Gii"]
del mag_ent["Gii_tmp"]
del mag_ent["Vu1"]
del mag_ent["Vu2"]
# create output dictionary with all the relevant data
results = dict(
parameters=simulation_parameters,
magnetic_entities=magnetic_entities,
pairs=pairs,
runtime=times,
)
# save dictionary
with open(outfile, "wb") as output_file:
pickle.dump(results, output_file)

Loading…
Cancel
Save