parent
8246a6a1ab
commit
0fc5e6765d
@ -1,398 +0,0 @@
|
|||||||
import warnings
|
|
||||||
from sys import stdout
|
|
||||||
from timeit import default_timer as timer
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import sisl
|
|
||||||
from mpi4py import MPI
|
|
||||||
from numpy.linalg import inv
|
|
||||||
from tqdm import tqdm
|
|
||||||
from useful import *
|
|
||||||
|
|
||||||
# runtime information
|
|
||||||
times = dict()
|
|
||||||
times["start_time"] = timer()
|
|
||||||
|
|
||||||
# this cell mimicks an input file
|
|
||||||
fdf = sisl.get_sile("./Jij_for_Marci_6p45ang/CrBr.fdf") # ./lat3_791/Fe3GeTe2.fdf
|
|
||||||
# this information needs to be given at the input!!
|
|
||||||
scf_xcf_orientation = np.array([0, 0, 1]) # z
|
|
||||||
# list of reference directions for around which we calculate the derivatives
|
|
||||||
# o is the quantization axis, v and w are two axes perpendicular to it
|
|
||||||
# at this moment the user has to supply o,v,w on the input.
|
|
||||||
# we can have some default for this
|
|
||||||
ref_xcf_orientations = [
|
|
||||||
dict(o=np.array([1, 0, 0]), vw=[np.array([0, 1, 0]), np.array([0, 0, 1])]),
|
|
||||||
dict(o=np.array([0, 1, 0]), vw=[np.array([1, 0, 0]), np.array([0, 0, 1])]),
|
|
||||||
dict(o=np.array([0, 0, 1]), vw=[np.array([1, 0, 0]), np.array([0, 1, 0])]),
|
|
||||||
]
|
|
||||||
|
|
||||||
"""
|
|
||||||
# human readable definition of magnetic entities ./lat3_791/Fe3GeTe2.fdf
|
|
||||||
magnetic_entities = [
|
|
||||||
dict(atom=3, l=2),
|
|
||||||
dict(atom=4, l=2),
|
|
||||||
dict(atom=5, l=2),
|
|
||||||
dict(
|
|
||||||
atom=[3, 4],
|
|
||||||
),
|
|
||||||
]
|
|
||||||
# pair information ./lat3_791/Fe3GeTe2.fdf
|
|
||||||
pairs = [
|
|
||||||
dict(ai=0, aj=1, Ruc=np.array([0, 0, 0])), # isotropic should be -82 meV
|
|
||||||
dict(
|
|
||||||
ai=0, aj=2, Ruc=np.array([0, 0, 0])
|
|
||||||
), # these should all be around -41.9 in the isotropic part
|
|
||||||
dict(ai=1, aj=2, Ruc=np.array([0, 0, 0])),
|
|
||||||
dict(ai=0, aj=2, Ruc=np.array([-1, 0, 0])),
|
|
||||||
dict(ai=1, aj=2, Ruc=np.array([-1, 0, 0])),
|
|
||||||
] """
|
|
||||||
|
|
||||||
# human readable definition of magnetic entities ./Jij_for_Marci_6p45ang/CrBr.fdf
|
|
||||||
magnetic_entities = [
|
|
||||||
dict(atom=0, l=2),
|
|
||||||
dict(atom=1, l=2),
|
|
||||||
dict(atom=2, l=2),
|
|
||||||
]
|
|
||||||
# pair information ./Jij_for_Marci_6p45ang/CrBr.fdf
|
|
||||||
pairs = [
|
|
||||||
dict(ai=0, aj=1, Ruc=np.array([0, 0, 0])),
|
|
||||||
dict(ai=0, aj=2, Ruc=np.array([0, 0, 0])),
|
|
||||||
dict(ai=1, aj=2, Ruc=np.array([0, 0, 0])),
|
|
||||||
dict(ai=0, aj=1, Ruc=np.array([1, 0, 0])),
|
|
||||||
dict(ai=0, aj=2, Ruc=np.array([1, 0, 0])),
|
|
||||||
dict(ai=0, aj=1, Ruc=np.array([-1, 0, 0])),
|
|
||||||
dict(ai=0, aj=2, Ruc=np.array([-1, 0, 0])),
|
|
||||||
dict(ai=0, aj=1, Ruc=np.array([0, 1, 0])),
|
|
||||||
dict(ai=0, aj=2, Ruc=np.array([0, 1, 0])),
|
|
||||||
dict(ai=0, aj=1, Ruc=np.array([0, 1, 0])),
|
|
||||||
dict(ai=0, aj=2, Ruc=np.array([0, 1, 0])),
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
# Brilloun zone sampling and Green function contour integral
|
|
||||||
kset = 20
|
|
||||||
kdirs = "xy"
|
|
||||||
ebot = -30
|
|
||||||
eset = 100
|
|
||||||
esetp = 10000
|
|
||||||
|
|
||||||
|
|
||||||
# MPI parameters
|
|
||||||
comm = MPI.COMM_WORLD
|
|
||||||
size = comm.Get_size()
|
|
||||||
rank = comm.Get_rank()
|
|
||||||
root_node = 0
|
|
||||||
if rank == root_node:
|
|
||||||
print("Number of nodes in the parallel cluster: ", size)
|
|
||||||
|
|
||||||
simulation_parameters = dict(
|
|
||||||
path="Not yet specified.",
|
|
||||||
scf_xcf_orientation=scf_xcf_orientation,
|
|
||||||
ref_xcf_orientations=ref_xcf_orientations,
|
|
||||||
kset=kset,
|
|
||||||
kdirs=kdirs,
|
|
||||||
ebot=ebot,
|
|
||||||
eset=eset,
|
|
||||||
esetp=esetp,
|
|
||||||
parallel_size=size,
|
|
||||||
)
|
|
||||||
|
|
||||||
# digestion of the input
|
|
||||||
# read in hamiltonian
|
|
||||||
dh = fdf.read_hamiltonian()
|
|
||||||
try:
|
|
||||||
simulation_parameters["geom"] = fdf.read_geometry()
|
|
||||||
except:
|
|
||||||
print("Error reading geometry.")
|
|
||||||
|
|
||||||
# unit cell index
|
|
||||||
uc_in_sc_idx = dh.lattice.sc_index([0, 0, 0])
|
|
||||||
|
|
||||||
times["setup_time"] = timer()
|
|
||||||
|
|
||||||
NO = dh.no # shorthand for number of orbitals in the unit cell
|
|
||||||
|
|
||||||
# preprocessing Hamiltonian and overlap matrix elements
|
|
||||||
h11 = dh.tocsr(dh.M11r)
|
|
||||||
h11 += dh.tocsr(dh.M11i) * 1.0j
|
|
||||||
h11 = h11.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
|
|
||||||
|
|
||||||
h22 = dh.tocsr(dh.M22r)
|
|
||||||
h22 += dh.tocsr(dh.M22i) * 1.0j
|
|
||||||
h22 = h22.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
|
|
||||||
|
|
||||||
h12 = dh.tocsr(dh.M12r)
|
|
||||||
h12 += dh.tocsr(dh.M12i) * 1.0j
|
|
||||||
h12 = h12.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
|
|
||||||
|
|
||||||
h21 = dh.tocsr(dh.M21r)
|
|
||||||
h21 += dh.tocsr(dh.M21i) * 1.0j
|
|
||||||
h21 = h21.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
|
|
||||||
|
|
||||||
sov = (
|
|
||||||
dh.tocsr(dh.S_idx)
|
|
||||||
.toarray()
|
|
||||||
.reshape(NO, dh.n_s, NO)
|
|
||||||
.transpose(0, 2, 1)
|
|
||||||
.astype("complex128")
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
# Reorganization of Hamiltonian and overlap matrix elements to SPIN BOX representation
|
|
||||||
U = np.vstack(
|
|
||||||
[np.kron(np.eye(NO, dtype=int), [1, 0]), np.kron(np.eye(NO, dtype=int), [0, 1])]
|
|
||||||
)
|
|
||||||
# This is the permutation that transforms ud1ud2 to u12d12
|
|
||||||
# That is this transforms FROM SPIN BOX to ORBITAL BOX => U
|
|
||||||
# the inverse transformation is U.T u12d12 to ud1ud2
|
|
||||||
# That is FROM ORBITAL BOX to SPIN BOX => U.T
|
|
||||||
|
|
||||||
# From now on everything is in SPIN BOX!!
|
|
||||||
hh, ss = np.array(
|
|
||||||
[
|
|
||||||
U.T @ np.block([[h11[:, :, i], h12[:, :, i]], [h21[:, :, i], h22[:, :, i]]]) @ U
|
|
||||||
for i in range(dh.lattice.nsc.prod())
|
|
||||||
]
|
|
||||||
), np.array(
|
|
||||||
[
|
|
||||||
U.T
|
|
||||||
@ np.block([[sov[:, :, i], sov[:, :, i] * 0], [sov[:, :, i] * 0, sov[:, :, i]]])
|
|
||||||
@ U
|
|
||||||
for i in range(dh.lattice.nsc.prod())
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
# symmetrizing Hamiltonian and overlap matrix to make them hermitian
|
|
||||||
for i in range(dh.lattice.sc_off.shape[0]):
|
|
||||||
j = dh.lattice.sc_index(-dh.lattice.sc_off[i])
|
|
||||||
h1, h1d = hh[i], hh[j]
|
|
||||||
hh[i], hh[j] = (h1 + h1d.T.conj()) / 2, (h1d + h1.T.conj()) / 2
|
|
||||||
s1, s1d = ss[i], ss[j]
|
|
||||||
ss[i], ss[j] = (s1 + s1d.T.conj()) / 2, (s1d + s1.T.conj()) / 2
|
|
||||||
|
|
||||||
# identifying TRS and TRB parts of the Hamiltonian
|
|
||||||
TAUY = np.kron(np.eye(NO), tau_y)
|
|
||||||
hTR = np.array([TAUY @ hh[i].conj() @ TAUY for i in range(dh.lattice.nsc.prod())])
|
|
||||||
hTRS = (hh + hTR) / 2
|
|
||||||
hTRB = (hh - hTR) / 2
|
|
||||||
|
|
||||||
# extracting the exchange field
|
|
||||||
traced = [spin_tracer(hTRB[i]) for i in range(dh.lattice.nsc.prod())] # equation 77
|
|
||||||
XCF = np.array(
|
|
||||||
[
|
|
||||||
np.array([f["x"] for f in traced]),
|
|
||||||
np.array([f["y"] for f in traced]),
|
|
||||||
np.array([f["z"] for f in traced]),
|
|
||||||
]
|
|
||||||
) # equation 77
|
|
||||||
|
|
||||||
# Check if exchange field has scalar part
|
|
||||||
max_xcfs = abs(np.array(np.array([f["c"] for f in traced]))).max()
|
|
||||||
if max_xcfs > 1e-12:
|
|
||||||
warnings.warn(
|
|
||||||
f"Exchange field has non negligible scalar part. Largest value is {max_xcfs}"
|
|
||||||
)
|
|
||||||
|
|
||||||
times["H_and_XCF_time"] = timer()
|
|
||||||
|
|
||||||
# for every site we have to store 3 Greens function (and the associated _tmp-s) in the 3 reference directions
|
|
||||||
for i, mag_ent in enumerate(magnetic_entities):
|
|
||||||
parsed = parse_magnetic_entity(dh, **mag_ent) # parse orbital indexes
|
|
||||||
magnetic_entities[i]["orbital_indeces"] = parsed
|
|
||||||
# calculate spin box indexes
|
|
||||||
magnetic_entities[i]["spin_box_indeces"] = blow_up_orbindx(parsed)
|
|
||||||
# calculate size for Greens function generation
|
|
||||||
spin_box_shape = len(mag_ent["spin_box_indeces"])
|
|
||||||
|
|
||||||
mag_ent["energies"] = [] # we will store the second order energy derivations here
|
|
||||||
|
|
||||||
mag_ent["Gii"] = [] # Greens function
|
|
||||||
mag_ent["Gii_tmp"] = [] # Greens function for parallelization
|
|
||||||
# These will be the perturbed potentials from eq. 100
|
|
||||||
mag_ent["Vu1"] = [list([]) for _ in range(len(ref_xcf_orientations))]
|
|
||||||
mag_ent["Vu2"] = [list([]) for _ in range(len(ref_xcf_orientations))]
|
|
||||||
for i in ref_xcf_orientations:
|
|
||||||
# Greens functions for every quantization axis
|
|
||||||
mag_ent["Gii"].append(
|
|
||||||
np.zeros((eset, spin_box_shape, spin_box_shape), dtype="complex128")
|
|
||||||
)
|
|
||||||
mag_ent["Gii_tmp"].append(
|
|
||||||
np.zeros((eset, spin_box_shape, spin_box_shape), dtype="complex128")
|
|
||||||
)
|
|
||||||
|
|
||||||
# for every site we have to store 2x3 Greens function (and the associated _tmp-s)
|
|
||||||
# in the 3 reference directions, because G_ij and G_ji are both needed
|
|
||||||
for pair in pairs:
|
|
||||||
# calculate size for Greens function generation
|
|
||||||
spin_box_shape_i = len(magnetic_entities[pair["ai"]]["spin_box_indeces"])
|
|
||||||
spin_box_shape_j = len(magnetic_entities[pair["aj"]]["spin_box_indeces"])
|
|
||||||
|
|
||||||
pair["energies"] = [] # we will store the second order energy derivations here
|
|
||||||
|
|
||||||
pair["Gij"] = [] # Greens function
|
|
||||||
pair["Gji"] = []
|
|
||||||
pair["Gij_tmp"] = [] # Greens function for parallelization
|
|
||||||
pair["Gji_tmp"] = []
|
|
||||||
for i in ref_xcf_orientations:
|
|
||||||
# Greens functions for every quantization axis
|
|
||||||
pair["Gij"].append(
|
|
||||||
np.zeros((eset, spin_box_shape_i, spin_box_shape_j), dtype="complex128")
|
|
||||||
)
|
|
||||||
pair["Gij_tmp"].append(
|
|
||||||
np.zeros((eset, spin_box_shape_i, spin_box_shape_j), dtype="complex128")
|
|
||||||
)
|
|
||||||
pair["Gji"].append(
|
|
||||||
np.zeros((eset, spin_box_shape_j, spin_box_shape_i), dtype="complex128")
|
|
||||||
)
|
|
||||||
pair["Gji_tmp"].append(
|
|
||||||
np.zeros((eset, spin_box_shape_j, spin_box_shape_i), dtype="complex128")
|
|
||||||
)
|
|
||||||
|
|
||||||
times["site_and_pair_dictionaries_time"] = timer()
|
|
||||||
|
|
||||||
kset = make_kset(dirs=kdirs, NUMK=kset) # generate k space sampling
|
|
||||||
wkset = np.ones(len(kset)) / len(kset) # generate weights for k points
|
|
||||||
kpcs = np.array_split(kset, size) # split the k points based on MPI size
|
|
||||||
kpcs[root_node] = tqdm(kpcs[root_node], desc="k loop", file=stdout)
|
|
||||||
|
|
||||||
times["k_set_time"] = timer()
|
|
||||||
|
|
||||||
# this will contain the three hamiltonians in the reference directions needed to calculate the energy variations upon rotation
|
|
||||||
hamiltonians = []
|
|
||||||
|
|
||||||
# iterate over the reference directions (quantization axes)
|
|
||||||
for i, orient in enumerate(ref_xcf_orientations):
|
|
||||||
# obtain rotated exchange field
|
|
||||||
R = RotMa2b(scf_xcf_orientation, orient["o"])
|
|
||||||
rot_XCF = np.einsum("ij,jklm->iklm", R, XCF)
|
|
||||||
rot_H_XCF = sum(
|
|
||||||
[np.kron(rot_XCF[i], tau) for i, tau in enumerate([tau_x, tau_y, tau_z])]
|
|
||||||
)
|
|
||||||
rot_H_XCF_uc = rot_H_XCF[uc_in_sc_idx]
|
|
||||||
|
|
||||||
# obtain total Hamiltonian with the rotated exchange field
|
|
||||||
rot_H = (
|
|
||||||
hTRS + rot_H_XCF
|
|
||||||
) # equation 76 #######################################################################################
|
|
||||||
|
|
||||||
hamiltonians.append(
|
|
||||||
dict(orient=orient["o"], H=rot_H)
|
|
||||||
) # store orientation and rotated Hamiltonian
|
|
||||||
|
|
||||||
# these are the infinitezimal rotations (for now) perpendicular to the quantization axis
|
|
||||||
for u in orient["vw"]:
|
|
||||||
Tu = np.kron(np.eye(NO, dtype=int), tau_u(u)) # section 2.H
|
|
||||||
|
|
||||||
Vu1 = 1j / 2 * commutator(rot_H_XCF_uc, Tu) # equation 100
|
|
||||||
Vu2 = 1 / 8 * commutator(commutator(Tu, rot_H_XCF_uc), Tu) # equation 100
|
|
||||||
|
|
||||||
for mag_ent in magnetic_entities:
|
|
||||||
# fill up the perturbed potentials (for now) based on the on-site projections
|
|
||||||
mag_ent["Vu1"][i].append(
|
|
||||||
Vu1[:, mag_ent["spin_box_indeces"]][mag_ent["spin_box_indeces"], :]
|
|
||||||
)
|
|
||||||
mag_ent["Vu2"][i].append(
|
|
||||||
Vu2[:, mag_ent["spin_box_indeces"]][mag_ent["spin_box_indeces"], :]
|
|
||||||
)
|
|
||||||
|
|
||||||
times["reference_rotations_time"] = timer()
|
|
||||||
|
|
||||||
if rank == root_node:
|
|
||||||
print("Number of magnetic entities being calculated: ", len(magnetic_entities))
|
|
||||||
print(
|
|
||||||
"We have to calculate the Greens function for three reference direction and we are going to calculate 15 energy integrals per site."
|
|
||||||
)
|
|
||||||
print(f"The shape of the Hamiltonian and the Greens function is {NO}x{NO}.")
|
|
||||||
comm.Barrier()
|
|
||||||
# ----------------------------------------------------------------------
|
|
||||||
|
|
||||||
# make energy contour
|
|
||||||
# we are working in eV now !
|
|
||||||
# and sisil shifts E_F to 0 !
|
|
||||||
cont = make_contour(emin=ebot, enum=eset, p=esetp)
|
|
||||||
eran = cont.ze
|
|
||||||
|
|
||||||
# ----------------------------------------------------------------------
|
|
||||||
# sampling the integrand on the contour and the BZ
|
|
||||||
for k in kpcs[rank]:
|
|
||||||
wk = wkset[rank] # weight of k point in BZ integral
|
|
||||||
# iterate over reference directions
|
|
||||||
for i, hamiltonian_orientation in enumerate(hamiltonians):
|
|
||||||
# calculate Greens function
|
|
||||||
H = hamiltonian_orientation["H"]
|
|
||||||
HK, SK = hsk(H, ss, dh.sc_off, k)
|
|
||||||
Gk = inv(SK * eran.reshape(eset, 1, 1) - HK)
|
|
||||||
|
|
||||||
# solve Greens function sequentially for the energies, because of memory bound
|
|
||||||
# Gk = np.zeros(shape=(eset, HK.shape[0], HK.shape[1]), dtype="complex128")
|
|
||||||
# for j in range(eset):
|
|
||||||
# Gk[j] = inv(SK * eran[j] - HK)
|
|
||||||
|
|
||||||
# store the Greens function slice of the magnetic entities (for now) based on the on-site projections
|
|
||||||
for mag_ent in magnetic_entities:
|
|
||||||
mag_ent["Gii_tmp"][i] += (
|
|
||||||
Gk[:, mag_ent["spin_box_indeces"]][..., mag_ent["spin_box_indeces"]]
|
|
||||||
* wk
|
|
||||||
)
|
|
||||||
|
|
||||||
for pair in pairs:
|
|
||||||
# add phase shift based on the cell difference
|
|
||||||
phase = np.exp(1j * 2 * np.pi * k @ pair["Ruc"].T)
|
|
||||||
|
|
||||||
# get the pair orbital sizes from the magnetic entities
|
|
||||||
ai = magnetic_entities[pair["ai"]]["spin_box_indeces"]
|
|
||||||
aj = magnetic_entities[pair["aj"]]["spin_box_indeces"]
|
|
||||||
|
|
||||||
# store the Greens function slice of the magnetic entities (for now) based on the on-site projections
|
|
||||||
pair["Gij_tmp"][i] += Gk[:, ai][..., aj] * phase * wk
|
|
||||||
pair["Gji_tmp"][i] += Gk[:, aj][..., ai] * phase * wk
|
|
||||||
|
|
||||||
# summ reduce partial results of mpi nodes
|
|
||||||
for i in range(len(hamiltonians)):
|
|
||||||
for mag_ent in magnetic_entities:
|
|
||||||
comm.Reduce(mag_ent["Gii_tmp"][i], mag_ent["Gii"][i], root=root_node)
|
|
||||||
|
|
||||||
for pair in pairs:
|
|
||||||
comm.Reduce(pair["Gij_tmp"][i], pair["Gij"][i], root=root_node)
|
|
||||||
comm.Reduce(pair["Gji_tmp"][i], pair["Gji"][i], root=root_node)
|
|
||||||
|
|
||||||
times["green_function_inversion_time"] = timer()
|
|
||||||
|
|
||||||
if rank == root_node:
|
|
||||||
# iterate over the magnetic entities
|
|
||||||
for tracker, mag_ent in enumerate(magnetic_entities):
|
|
||||||
# iterate over the quantization axes
|
|
||||||
for i, Gii in enumerate(mag_ent["Gii"]):
|
|
||||||
storage = []
|
|
||||||
# iterate over the first and second order local perturbations
|
|
||||||
for Vu1, Vu2 in zip(mag_ent["Vu1"][i], mag_ent["Vu2"][i]):
|
|
||||||
# The Szunyogh-Lichtenstein formula
|
|
||||||
traced = np.trace((Vu2 @ Gii + 0.5 * Gii @ Vu1 @ Gii), axis1=1, axis2=2)
|
|
||||||
# evaluation of the contour integral
|
|
||||||
storage.append(np.trapz(-1 / np.pi * np.imag(traced * cont.we)))
|
|
||||||
|
|
||||||
# fill up the magnetic entities dictionary with the energies
|
|
||||||
magnetic_entities[tracker]["energies"].append(storage)
|
|
||||||
|
|
||||||
# iterate over the pairs
|
|
||||||
for tracker, pair in enumerate(pairs):
|
|
||||||
# iterate over the quantization axes
|
|
||||||
for i, (Gij, Gji) in enumerate(zip(pair["Gij"], pair["Gji"])):
|
|
||||||
site_i = magnetic_entities[pair["ai"]]
|
|
||||||
site_j = magnetic_entities[pair["aj"]]
|
|
||||||
|
|
||||||
storage = []
|
|
||||||
# iterate over the first order local perturbations in all possible orientations for the two sites
|
|
||||||
for Vui in site_i["Vu1"][i]:
|
|
||||||
for Vuj in site_j["Vu1"][i]:
|
|
||||||
# The Szunyogh-Lichtenstein formula
|
|
||||||
traced = np.trace((Vui @ Gij @ Vuj @ Gji), axis1=1, axis2=2)
|
|
||||||
# evaluation of the contour integral
|
|
||||||
storage.append(np.trapz(-1 / np.pi * np.imag(traced * cont.we)))
|
|
||||||
# fill up the pairs dictionary with the energies
|
|
||||||
pairs[tracker]["energies"].append(storage)
|
|
||||||
|
|
||||||
times["end_time"] = timer()
|
|
||||||
print_output(simulation_parameters, magnetic_entities, pairs, dh, times)
|
|
Loading…
Reference in new issue