parent
6fee54f86c
commit
211e3be6bd
File diff suppressed because one or more lines are too long
@ -0,0 +1,550 @@
|
||||
import pickle
|
||||
import warnings
|
||||
from sys import getsizeof
|
||||
from timeit import default_timer as timer
|
||||
|
||||
import numpy as np
|
||||
import sisl
|
||||
import sisl.viz
|
||||
from mpi4py import MPI
|
||||
from numpy.linalg import inv
|
||||
from tqdm import tqdm
|
||||
|
||||
from src.grogu_magn.useful import *
|
||||
|
||||
"""
|
||||
# Some input parsing
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--kset' , dest = 'kset' , default = 2 , type=int , help = 'k-space resolution of Jij calculation')
|
||||
parser.add_argument('--kdirs' , dest = 'kdirs' , default = 'xyz' , help = 'Definition of k-space dimensionality')
|
||||
parser.add_argument('--eset' , dest = 'eset' , default = 42 , type=int , help = 'Number of energy points on the contour')
|
||||
parser.add_argument('--eset-p' , dest = 'esetp' , default = 10 , type=int , help = 'Parameter tuning the distribution on the contour')
|
||||
parser.add_argument('--input' , dest = 'infile' , required = True , help = 'Input file name')
|
||||
parser.add_argument('--output' , dest = 'outfile', required = True , help = 'Output file name')
|
||||
parser.add_argument('--Ebot' , dest = 'Ebot' , default = -20.0 , type=float, help = 'Bottom energy of the contour')
|
||||
parser.add_argument('--npairs' , dest = 'npairs' , default = 1 , type=int , help = 'Number of unitcell pairs in each direction for Jij calculation')
|
||||
parser.add_argument('--adirs' , dest = 'adirs' , default = False , help = 'Definition of pair directions')
|
||||
parser.add_argument('--use-tqdm', dest = 'usetqdm', default = 'not' , help = 'Use tqdm for progressbars or not')
|
||||
parser.add_argument('--cutoff' , dest = 'cutoff' , default = 100.0 , type=float, help = 'Real space cutoff for pair generation in Angs')
|
||||
parser.add_argument('--pairfile', dest = 'pairfile', default = False , help = 'File to read pair information')
|
||||
args = parser.parse_args()
|
||||
"""
|
||||
# runtime information
|
||||
times = dict()
|
||||
times["start_time"] = timer()
|
||||
|
||||
################################################################################
|
||||
#################################### INPUT #####################################
|
||||
################################################################################
|
||||
path = (
|
||||
"/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf"
|
||||
)
|
||||
outfile = "./Fe3GeTe2_benchmark_on_15k_300eset_orb_test3"
|
||||
|
||||
# this information needs to be given at the input!!
|
||||
scf_xcf_orientation = np.array([0, 0, 1]) # z
|
||||
# list of reference directions for around which we calculate the derivatives
|
||||
# o is the quantization axis, v and w are two axes perpendicular to it
|
||||
# at this moment the user has to supply o,v,w on the input.
|
||||
# we can have some default for this
|
||||
ref_xcf_orientations = [
|
||||
dict(o=np.array([1, 0, 0]), vw=[np.array([0, 1, 0]), np.array([0, 0, 1])]),
|
||||
dict(o=np.array([0, 1, 0]), vw=[np.array([1, 0, 0]), np.array([0, 0, 1])]),
|
||||
dict(o=np.array([0, 0, 1]), vw=[np.array([1, 0, 0]), np.array([0, 1, 0])]),
|
||||
]
|
||||
magnetic_entities = [
|
||||
dict(atom=3, l=2),
|
||||
dict(atom=4, l=2),
|
||||
dict(atom=5, l=1),
|
||||
]
|
||||
pairs = [
|
||||
dict(ai=0, aj=1, Ruc=np.array([0, 0, 0])),
|
||||
dict(ai=0, aj=2, Ruc=np.array([0, 0, 0])),
|
||||
dict(ai=1, aj=2, Ruc=np.array([0, 0, 0])),
|
||||
dict(ai=0, aj=2, Ruc=np.array([-1, -1, 0])),
|
||||
dict(ai=1, aj=2, Ruc=np.array([-1, -1, 0])),
|
||||
dict(ai=0, aj=2, Ruc=np.array([-1, 0, 0])),
|
||||
dict(ai=1, aj=2, Ruc=np.array([-1, 0, 0])),
|
||||
dict(ai=1, aj=2, Ruc=np.array([-2, 0, 0])),
|
||||
dict(ai=1, aj=2, Ruc=np.array([-3, 0, 0])),
|
||||
]
|
||||
# Brilloun zone sampling and Green function contour integral
|
||||
kset = 15
|
||||
kdirs = "xy"
|
||||
ebot = -13
|
||||
eset = 300
|
||||
esetp = 1000
|
||||
################################################################################
|
||||
#################################### INPUT #####################################
|
||||
################################################################################
|
||||
|
||||
# MPI parameters
|
||||
comm = MPI.COMM_WORLD
|
||||
size = comm.Get_size()
|
||||
rank = comm.Get_rank()
|
||||
root_node = 0
|
||||
|
||||
# rename outfile
|
||||
if not outfile.endswith(".pickle"):
|
||||
outfile += ".pickle"
|
||||
|
||||
simulation_parameters = dict(
|
||||
path=path,
|
||||
outpath=outfile,
|
||||
scf_xcf_orientation=scf_xcf_orientation,
|
||||
ref_xcf_orientations=ref_xcf_orientations,
|
||||
kset=kset,
|
||||
kdirs=kdirs,
|
||||
ebot=ebot,
|
||||
eset=eset,
|
||||
esetp=esetp,
|
||||
parallel_size=size,
|
||||
)
|
||||
|
||||
# digestion of the input
|
||||
# read sile
|
||||
fdf = sisl.get_sile(path)
|
||||
# read in hamiltonian
|
||||
dh = fdf.read_hamiltonian()
|
||||
simulation_parameters["cell"] = fdf.read_geometry().cell
|
||||
|
||||
# unit cell index
|
||||
uc_in_sc_idx = dh.lattice.sc_index([0, 0, 0])
|
||||
|
||||
if rank == root_node:
|
||||
print_parameters(simulation_parameters)
|
||||
times["setup_time"] = timer()
|
||||
print(f"Setup done. Elapsed time: {times['setup_time']} s")
|
||||
print(
|
||||
"================================================================================================================================================================"
|
||||
)
|
||||
|
||||
NO = dh.no # shorthand for number of orbitals in the unit cell
|
||||
|
||||
# preprocessing Hamiltonian and overlap matrix elements
|
||||
h11 = dh.tocsr(dh.M11r)
|
||||
h11 += dh.tocsr(dh.M11i) * 1.0j
|
||||
h11 = h11.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
|
||||
|
||||
h22 = dh.tocsr(dh.M22r)
|
||||
h22 += dh.tocsr(dh.M22i) * 1.0j
|
||||
h22 = h22.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
|
||||
|
||||
h12 = dh.tocsr(dh.M12r)
|
||||
h12 += dh.tocsr(dh.M12i) * 1.0j
|
||||
h12 = h12.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
|
||||
|
||||
h21 = dh.tocsr(dh.M21r)
|
||||
h21 += dh.tocsr(dh.M21i) * 1.0j
|
||||
h21 = h21.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
|
||||
|
||||
sov = (
|
||||
dh.tocsr(dh.S_idx)
|
||||
.toarray()
|
||||
.reshape(NO, dh.n_s, NO)
|
||||
.transpose(0, 2, 1)
|
||||
.astype("complex128")
|
||||
)
|
||||
|
||||
|
||||
# Reorganization of Hamiltonian and overlap matrix elements to SPIN BOX representation
|
||||
U = np.vstack(
|
||||
[np.kron(np.eye(NO, dtype=int), [1, 0]), np.kron(np.eye(NO, dtype=int), [0, 1])]
|
||||
)
|
||||
# This is the permutation that transforms ud1ud2 to u12d12
|
||||
# That is this transforms FROM SPIN BOX to ORBITAL BOX => U
|
||||
# the inverse transformation is U.T u12d12 to ud1ud2
|
||||
# That is FROM ORBITAL BOX to SPIN BOX => U.T
|
||||
|
||||
# From now on everything is in SPIN BOX!!
|
||||
hh, ss = np.array(
|
||||
[
|
||||
U.T @ np.block([[h11[:, :, i], h12[:, :, i]], [h21[:, :, i], h22[:, :, i]]]) @ U
|
||||
for i in range(dh.lattice.nsc.prod())
|
||||
]
|
||||
), np.array(
|
||||
[
|
||||
U.T
|
||||
@ np.block([[sov[:, :, i], sov[:, :, i] * 0], [sov[:, :, i] * 0, sov[:, :, i]]])
|
||||
@ U
|
||||
for i in range(dh.lattice.nsc.prod())
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
# symmetrizing Hamiltonian and overlap matrix to make them hermitian
|
||||
for i in range(dh.lattice.sc_off.shape[0]):
|
||||
j = dh.lattice.sc_index(-dh.lattice.sc_off[i])
|
||||
h1, h1d = hh[i], hh[j]
|
||||
hh[i], hh[j] = (h1 + h1d.T.conj()) / 2, (h1d + h1.T.conj()) / 2
|
||||
s1, s1d = ss[i], ss[j]
|
||||
ss[i], ss[j] = (s1 + s1d.T.conj()) / 2, (s1d + s1.T.conj()) / 2
|
||||
|
||||
# identifying TRS and TRB parts of the Hamiltonian
|
||||
TAUY = np.kron(np.eye(NO), tau_y)
|
||||
hTR = np.array([TAUY @ hh[i].conj() @ TAUY for i in range(dh.lattice.nsc.prod())])
|
||||
hTRS = (hh + hTR) / 2
|
||||
hTRB = (hh - hTR) / 2
|
||||
|
||||
# extracting the exchange field
|
||||
traced = [spin_tracer(hTRB[i]) for i in range(dh.lattice.nsc.prod())] # equation 77
|
||||
XCF = np.array(
|
||||
[
|
||||
np.array([f["x"] for f in traced]),
|
||||
np.array([f["y"] for f in traced]),
|
||||
np.array([f["z"] for f in traced]),
|
||||
]
|
||||
) # equation 77
|
||||
|
||||
# Check if exchange field has scalar part
|
||||
max_xcfs = abs(np.array(np.array([f["c"] for f in traced]))).max()
|
||||
if max_xcfs > 1e-12:
|
||||
warnings.warn(
|
||||
f"Exchange field has non negligible scalar part. Largest value is {max_xcfs}"
|
||||
)
|
||||
|
||||
if rank == root_node:
|
||||
times["H_and_XCF_time"] = timer()
|
||||
print(
|
||||
f"Hamiltonian and exchange field rotated. Elapsed time: {times['H_and_XCF_time']} s"
|
||||
)
|
||||
print(
|
||||
"================================================================================================================================================================"
|
||||
)
|
||||
|
||||
# for every site we have to store 3 Greens function (and the associated _tmp-s) in the 3 reference directions
|
||||
for mag_ent in magnetic_entities:
|
||||
parsed = parse_magnetic_entity(dh, **mag_ent) # parse orbital indexes
|
||||
mag_ent["orbital_indeces"] = parsed
|
||||
mag_ent["spin_box_indeces"] = blow_up_orbindx(parsed) # calculate spin box indexes
|
||||
# if orbital is not set use all
|
||||
if "l" not in mag_ent.keys():
|
||||
mag_ent["l"] = "all"
|
||||
if isinstance(mag_ent["atom"], int):
|
||||
mag_ent["tags"] = [
|
||||
f"[{mag_ent['atom']}]{dh.atoms[mag_ent['atom']].tag}({mag_ent['l']})"
|
||||
]
|
||||
mag_ent["xyz"] = [dh.xyz[mag_ent["atom"]]]
|
||||
if isinstance(mag_ent["atom"], list):
|
||||
mag_ent["tags"] = []
|
||||
mag_ent["xyz"] = []
|
||||
# iterate over atoms
|
||||
for atom_idx in mag_ent["atom"]:
|
||||
mag_ent["tags"].append(
|
||||
f"[{atom_idx}]{dh.atoms[atom_idx].tag}({mag_ent['l']})"
|
||||
)
|
||||
mag_ent["xyz"].append(dh.xyz[atom_idx])
|
||||
|
||||
# calculate size for Greens function generation
|
||||
spin_box_shape = len(mag_ent["spin_box_indeces"])
|
||||
|
||||
mag_ent["energies"] = [] # we will store the second order energy derivations here
|
||||
|
||||
# These will be the perturbed potentials from eq. 100
|
||||
mag_ent["Vu1"] = [] # so they are independent in memory
|
||||
mag_ent["Vu2"] = []
|
||||
|
||||
mag_ent["Gii"] = [] # Greens function
|
||||
mag_ent["Gii_tmp"] = [] # Greens function for parallelization
|
||||
for i in ref_xcf_orientations:
|
||||
# Rotations for every quantization axis
|
||||
mag_ent["Vu1"].append([])
|
||||
mag_ent["Vu2"].append([])
|
||||
# Greens functions for every quantization axis
|
||||
mag_ent["Gii"].append(
|
||||
np.zeros((eset, spin_box_shape, spin_box_shape), dtype="complex128")
|
||||
)
|
||||
mag_ent["Gii_tmp"].append(
|
||||
np.zeros((eset, spin_box_shape, spin_box_shape), dtype="complex128")
|
||||
)
|
||||
|
||||
# for every site we have to store 2x3 Greens function (and the associated _tmp-s)
|
||||
# in the 3 reference directions, because G_ij and G_ji are both needed
|
||||
for pair in pairs:
|
||||
# calculate distance
|
||||
xyz_ai = magnetic_entities[pair["ai"]]["xyz"]
|
||||
xyz_aj = magnetic_entities[pair["aj"]]["xyz"]
|
||||
xyz_aj = xyz_aj + pair["Ruc"] @ simulation_parameters["cell"]
|
||||
pair["dist"] = np.linalg.norm(xyz_ai - xyz_aj)
|
||||
|
||||
# calculate size for Greens function generation
|
||||
spin_box_shape_i = len(magnetic_entities[pair["ai"]]["spin_box_indeces"])
|
||||
spin_box_shape_j = len(magnetic_entities[pair["aj"]]["spin_box_indeces"])
|
||||
pair["tags"] = []
|
||||
for mag_ent in [magnetic_entities[pair["ai"]], magnetic_entities[pair["aj"]]]:
|
||||
tag = ""
|
||||
# get atoms of magnetic entity
|
||||
atoms_idx = mag_ent["atom"]
|
||||
orbitals = mag_ent["l"]
|
||||
|
||||
# if magnetic entity contains one atoms
|
||||
if isinstance(atoms_idx, int):
|
||||
tag += f"[{atoms_idx}]{dh.atoms[atoms_idx].tag}({orbitals})"
|
||||
|
||||
# if magnetic entity contains more than one atoms
|
||||
if isinstance(atoms_idx, list):
|
||||
# iterate over atoms
|
||||
atom_group = "{"
|
||||
for atom_idx in atoms_idx:
|
||||
atom_group += f"[{atom_idx}]{dh.atoms[atom_idx].tag}({orbitals})--"
|
||||
# end {} of the atoms in the magnetic entity
|
||||
tag += atom_group[:-2] + "}"
|
||||
pair["tags"].append(tag)
|
||||
pair["energies"] = [] # we will store the second order energy derivations here
|
||||
|
||||
pair["Gij"] = [] # Greens function
|
||||
pair["Gji"] = []
|
||||
pair["Gij_tmp"] = [] # Greens function for parallelization
|
||||
pair["Gji_tmp"] = []
|
||||
for i in ref_xcf_orientations:
|
||||
# Greens functions for every quantization axis
|
||||
pair["Gij"].append(
|
||||
np.zeros((eset, spin_box_shape_i, spin_box_shape_j), dtype="complex128")
|
||||
)
|
||||
pair["Gij_tmp"].append(
|
||||
np.zeros((eset, spin_box_shape_i, spin_box_shape_j), dtype="complex128")
|
||||
)
|
||||
pair["Gji"].append(
|
||||
np.zeros((eset, spin_box_shape_j, spin_box_shape_i), dtype="complex128")
|
||||
)
|
||||
pair["Gji_tmp"].append(
|
||||
np.zeros((eset, spin_box_shape_j, spin_box_shape_i), dtype="complex128")
|
||||
)
|
||||
|
||||
if rank == root_node:
|
||||
times["site_and_pair_dictionaries_time"] = timer()
|
||||
print(
|
||||
f"Site and pair dictionaries created. Elapsed time: {times['site_and_pair_dictionaries_time']} s"
|
||||
)
|
||||
print(
|
||||
"================================================================================================================================================================"
|
||||
)
|
||||
|
||||
kset = make_kset(dirs=kdirs, NUMK=kset) # generate k space sampling
|
||||
wkset = np.ones(len(kset)) / len(kset) # generate weights for k points
|
||||
kpcs = np.array_split(kset, size) # split the k points based on MPI size
|
||||
kpcs[root_node] = tqdm(kpcs[root_node], desc="k loop")
|
||||
|
||||
if rank == root_node:
|
||||
times["k_set_time"] = timer()
|
||||
print(f"k set created. Elapsed time: {times['k_set_time']} s")
|
||||
print(
|
||||
"================================================================================================================================================================"
|
||||
)
|
||||
|
||||
# this will contain the three hamiltonians in the reference directions needed to calculate the energy variations upon rotation
|
||||
hamiltonians = []
|
||||
|
||||
# iterate over the reference directions (quantization axes)
|
||||
for i, orient in enumerate(ref_xcf_orientations):
|
||||
# obtain rotated exchange field
|
||||
R = RotMa2b(scf_xcf_orientation, orient["o"])
|
||||
rot_XCF = np.einsum("ij,jklm->iklm", R, XCF)
|
||||
rot_H_XCF = sum(
|
||||
[np.kron(rot_XCF[i], tau) for i, tau in enumerate([tau_x, tau_y, tau_z])]
|
||||
)
|
||||
rot_H_XCF_uc = rot_H_XCF[uc_in_sc_idx]
|
||||
|
||||
# obtain total Hamiltonian with the rotated exchange field
|
||||
rot_H = (
|
||||
hTRS + rot_H_XCF
|
||||
) # equation 76 #######################################################################################
|
||||
|
||||
hamiltonians.append(
|
||||
dict(orient=orient["o"], H=rot_H)
|
||||
) # store orientation and rotated Hamiltonian
|
||||
|
||||
# these are the rotations (for now) perpendicular to the quantization axis
|
||||
for u in orient["vw"]:
|
||||
Tu = np.kron(np.eye(NO, dtype=int), tau_u(u)) # section 2.H
|
||||
|
||||
Vu1 = 1j / 2 * commutator(rot_H_XCF_uc, Tu) # equation 100
|
||||
Vu2 = 1 / 8 * commutator(commutator(Tu, rot_H_XCF_uc), Tu) # equation 100
|
||||
|
||||
for mag_ent in magnetic_entities:
|
||||
idx = mag_ent["spin_box_indeces"]
|
||||
# fill up the perturbed potentials (for now) based on the on-site projections
|
||||
mag_ent["Vu1"][i].append(Vu1[:, idx][idx, :])
|
||||
mag_ent["Vu2"][i].append(Vu2[:, idx][idx, :])
|
||||
|
||||
if rank == root_node:
|
||||
times["reference_rotations_time"] = timer()
|
||||
print(
|
||||
f"Rotations done perpendicular to quantization axis. Elapsed time: {times['reference_rotations_time']} s"
|
||||
)
|
||||
print(
|
||||
"================================================================================================================================================================"
|
||||
)
|
||||
|
||||
|
||||
if rank == root_node:
|
||||
print("Starting matrix inversions")
|
||||
print(f"Total number of k points: {kset.shape[0]}")
|
||||
print(f"Number of energy samples per k point: {eset}")
|
||||
print(f"Total number of directions: {len(hamiltonians)}")
|
||||
print(
|
||||
f"Total number of matrix inversions: {kset.shape[0] * len(hamiltonians) * eset}"
|
||||
)
|
||||
print(f"The shape of the Hamiltonian and the Greens function is {NO}x{NO}={NO*NO}")
|
||||
# https://stackoverflow.com/questions/70746660/how-to-predict-memory-requirement-for-np-linalg-inv
|
||||
# memory is O(64 n**2) for complex matrices
|
||||
memory_size = getsizeof(hamiltonians[0]["H"].base) / 1024
|
||||
print(
|
||||
f"Memory taken by a single Hamiltonian is: {getsizeof(hamiltonians[0]['H'].base) / 1024} KB"
|
||||
)
|
||||
print(f"Expected memory usage per matrix inversion: {memory_size * 32} KB")
|
||||
print(
|
||||
f"Expected memory usage per k point for parallel inversion: {memory_size * len(hamiltonians) * eset * 32} KB"
|
||||
)
|
||||
print(
|
||||
f"Expected memory usage on root node: {len(np.array_split(kset, size)[0]) * memory_size * len(hamiltonians) * eset * 32 / 1024} MB"
|
||||
)
|
||||
print(
|
||||
"================================================================================================================================================================"
|
||||
)
|
||||
|
||||
comm.Barrier()
|
||||
# ----------------------------------------------------------------------
|
||||
|
||||
# make energy contour
|
||||
# we are working in eV now !
|
||||
# and sisl shifts E_F to 0 !
|
||||
cont = make_contour(emin=ebot, enum=eset, p=esetp)
|
||||
eran = cont.ze
|
||||
|
||||
# ----------------------------------------------------------------------
|
||||
# sampling the integrand on the contour and the BZ
|
||||
for k in kpcs[rank]:
|
||||
wk = wkset[rank] # weight of k point in BZ integral
|
||||
# iterate over reference directions
|
||||
for i, hamiltonian_orientation in enumerate(hamiltonians):
|
||||
# calculate Greens function
|
||||
H = hamiltonian_orientation["H"]
|
||||
HK, SK = hsk(H, ss, dh.sc_off, k)
|
||||
# Gk = inv(SK * eran.reshape(eset, 1, 1) - HK)
|
||||
|
||||
# solve Greens function sequentially for the energies, because of memory bound
|
||||
Gk = np.zeros(shape=(eset, HK.shape[0], HK.shape[1]), dtype="complex128")
|
||||
for j in range(eset):
|
||||
Gk[j] = inv(SK * eran[j] - HK)
|
||||
|
||||
# store the Greens function slice of the magnetic entities (for now) based on the on-site projections
|
||||
for mag_ent in magnetic_entities:
|
||||
mag_ent["Gii_tmp"][i] += (
|
||||
Gk[:, mag_ent["spin_box_indeces"], :][:, :, mag_ent["spin_box_indeces"]]
|
||||
* wk
|
||||
)
|
||||
|
||||
for pair in pairs:
|
||||
# add phase shift based on the cell difference
|
||||
phase = np.exp(1j * 2 * np.pi * k @ pair["Ruc"].T)
|
||||
|
||||
# get the pair orbital sizes from the magnetic entities
|
||||
ai = magnetic_entities[pair["ai"]]["spin_box_indeces"]
|
||||
aj = magnetic_entities[pair["aj"]]["spin_box_indeces"]
|
||||
|
||||
# store the Greens function slice of the magnetic entities (for now) based on the on-site projections
|
||||
pair["Gij_tmp"][i] += Gk[:, ai][..., aj] * phase * wk
|
||||
pair["Gji_tmp"][i] += Gk[:, aj][..., ai] / phase * wk
|
||||
|
||||
# summ reduce partial results of mpi nodes
|
||||
for i in range(len(hamiltonians)):
|
||||
for mag_ent in magnetic_entities:
|
||||
comm.Reduce(mag_ent["Gii_tmp"][i], mag_ent["Gii"][i], root=root_node)
|
||||
|
||||
for pair in pairs:
|
||||
comm.Reduce(pair["Gij_tmp"][i], pair["Gij"][i], root=root_node)
|
||||
comm.Reduce(pair["Gji_tmp"][i], pair["Gji"][i], root=root_node)
|
||||
|
||||
if rank == root_node:
|
||||
times["green_function_inversion_time"] = timer()
|
||||
print(
|
||||
f"Calculated Greens functions. Elapsed time: {times['green_function_inversion_time']} s"
|
||||
)
|
||||
print(
|
||||
"================================================================================================================================================================"
|
||||
)
|
||||
|
||||
if rank == root_node:
|
||||
# iterate over the magnetic entities
|
||||
for tracker, mag_ent in enumerate(magnetic_entities):
|
||||
# iterate over the quantization axes
|
||||
for i, Gii in enumerate(mag_ent["Gii"]):
|
||||
storage = []
|
||||
# iterate over the first and second order local perturbations
|
||||
for Vu1, Vu2 in zip(mag_ent["Vu1"][i], mag_ent["Vu2"][i]):
|
||||
# The Szunyogh-Lichtenstein formula
|
||||
traced = np.trace((Vu2 @ Gii + 0.5 * Gii @ Vu1 @ Gii), axis1=1, axis2=2)
|
||||
# evaluation of the contour integral
|
||||
storage.append(np.trapz(-1 / np.pi * np.imag(traced * cont.we)))
|
||||
|
||||
# fill up the magnetic entities dictionary with the energies
|
||||
magnetic_entities[tracker]["energies"].append(storage)
|
||||
# convert to np array
|
||||
magnetic_entities[tracker]["energies"] = np.array(
|
||||
magnetic_entities[tracker]["energies"]
|
||||
)
|
||||
print("Magnetic entities integrated.")
|
||||
|
||||
# iterate over the pairs
|
||||
for tracker, pair in enumerate(pairs):
|
||||
# iterate over the quantization axes
|
||||
for i, (Gij, Gji) in enumerate(zip(pair["Gij"], pair["Gji"])):
|
||||
site_i = magnetic_entities[pair["ai"]]
|
||||
site_j = magnetic_entities[pair["aj"]]
|
||||
|
||||
storage = []
|
||||
# iterate over the first order local perturbations in all possible orientations for the two sites
|
||||
for Vui in site_i["Vu1"][i]:
|
||||
for Vuj in site_j["Vu1"][i]:
|
||||
# The Szunyogh-Lichtenstein formula
|
||||
traced = np.trace((Vui @ Gij @ Vuj @ Gji), axis1=1, axis2=2)
|
||||
# evaluation of the contour integral
|
||||
storage.append(np.trapz(-1 / np.pi * np.imag(traced * cont.we)))
|
||||
# fill up the pairs dictionary with the energies
|
||||
pairs[tracker]["energies"].append(storage)
|
||||
# convert to np array
|
||||
pairs[tracker]["energies"] = np.array(pairs[tracker]["energies"])
|
||||
|
||||
print("Pairs integrated.")
|
||||
|
||||
# calculate magnetic parameters
|
||||
for pair in pairs:
|
||||
J_iso, J_S, D, J = calculate_exchange_tensor(pair)
|
||||
pair["J_iso"] = J_iso * sisl.unit_convert("eV", "meV")
|
||||
pair["J_S"] = J_S * sisl.unit_convert("eV", "meV")
|
||||
pair["D"] = D * sisl.unit_convert("eV", "meV")
|
||||
pair["J"] = J * sisl.unit_convert("eV", "meV")
|
||||
|
||||
print("Magnetic parameters calculated.")
|
||||
|
||||
times["end_time"] = timer()
|
||||
print(
|
||||
"##################################################################### GROGU OUTPUT #############################################################################"
|
||||
)
|
||||
|
||||
print_parameters(simulation_parameters)
|
||||
print_atoms_and_pairs(magnetic_entities, pairs)
|
||||
print_runtime_information(times)
|
||||
|
||||
# remove clutter from magnetic entities and pair information
|
||||
for pair in pairs:
|
||||
del pair["Gij"]
|
||||
del pair["Gij_tmp"]
|
||||
del pair["Gji"]
|
||||
del pair["Gji_tmp"]
|
||||
for mag_ent in magnetic_entities:
|
||||
del mag_ent["Gii"]
|
||||
del mag_ent["Gii_tmp"]
|
||||
del mag_ent["Vu1"]
|
||||
del mag_ent["Vu2"]
|
||||
# create output dictionary with all the relevant data
|
||||
results = dict(
|
||||
parameters=simulation_parameters,
|
||||
magnetic_entities=magnetic_entities,
|
||||
pairs=pairs,
|
||||
runtime=times,
|
||||
)
|
||||
# save dictionary
|
||||
with open(outfile, "wb") as output_file:
|
||||
pickle.dump(results, output_file)
|
Loading…
Reference in new issue