parent
933a50fddf
commit
49d2be4982
@ -0,0 +1,263 @@
|
||||
import numpy as np
|
||||
from numpy.linalg import inv
|
||||
|
||||
from grogu_magn.utils import blow_up_orbindx, commutator, parse_magnetic_entity
|
||||
|
||||
|
||||
def parallel_Gk(HK, SK, eran, eset):
|
||||
return inv(SK * eran.reshape(eset, 1, 1) - HK)
|
||||
|
||||
|
||||
def sequential_GK(HK, SK, eran, eset):
|
||||
Gk = np.zeros(shape=(eset, HK.shape[0], HK.shape[1]), dtype="complex128")
|
||||
for j in range(eset):
|
||||
Gk[j] = inv(SK * eran[j] - HK)
|
||||
|
||||
return Gk
|
||||
|
||||
|
||||
def calc_Vu(H, Tu):
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
H (_type_): _description_
|
||||
Tu (_type_): _description_
|
||||
|
||||
Returns:
|
||||
_type_: _description_
|
||||
"""
|
||||
|
||||
Vu1 = 1j / 2 * commutator(H, Tu) # equation 100
|
||||
Vu2 = 1 / 8 * commutator(commutator(Tu, H), Tu) # equation 100
|
||||
|
||||
return Vu1, Vu2
|
||||
|
||||
|
||||
def remove_clutter_for_save(pairs, magnetic_entities):
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
pairs (_type_): _description_
|
||||
magnetic_entities (_type_): _description_
|
||||
|
||||
Returns:
|
||||
_type_: _description_
|
||||
"""
|
||||
# remove clutter from magnetic entities and pair information
|
||||
for pair in pairs:
|
||||
del pair["Gij"]
|
||||
del pair["Gij_tmp"]
|
||||
del pair["Gji"]
|
||||
del pair["Gji_tmp"]
|
||||
for mag_ent in magnetic_entities:
|
||||
del mag_ent["Gii"]
|
||||
del mag_ent["Gii_tmp"]
|
||||
del mag_ent["Vu1"]
|
||||
del mag_ent["Vu2"]
|
||||
|
||||
return pairs, magnetic_entities
|
||||
|
||||
|
||||
def build_hh_ss(dh):
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
dh (_type_): _description_
|
||||
|
||||
Returns:
|
||||
_type_: _description_
|
||||
"""
|
||||
NO = dh.no # shorthand for number of orbitals in the unit cell
|
||||
|
||||
# preprocessing Hamiltonian and overlap matrix elements
|
||||
h11 = dh.tocsr(dh.M11r)
|
||||
h11 += dh.tocsr(dh.M11i) * 1.0j
|
||||
h11 = h11.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
|
||||
|
||||
h22 = dh.tocsr(dh.M22r)
|
||||
h22 += dh.tocsr(dh.M22i) * 1.0j
|
||||
h22 = h22.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
|
||||
|
||||
h12 = dh.tocsr(dh.M12r)
|
||||
h12 += dh.tocsr(dh.M12i) * 1.0j
|
||||
h12 = h12.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
|
||||
|
||||
h21 = dh.tocsr(dh.M21r)
|
||||
h21 += dh.tocsr(dh.M21i) * 1.0j
|
||||
h21 = h21.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
|
||||
|
||||
sov = (
|
||||
dh.tocsr(dh.S_idx)
|
||||
.toarray()
|
||||
.reshape(NO, dh.n_s, NO)
|
||||
.transpose(0, 2, 1)
|
||||
.astype("complex128")
|
||||
)
|
||||
|
||||
# Reorganization of Hamiltonian and overlap matrix elements to SPIN BOX representation
|
||||
U = np.vstack(
|
||||
[np.kron(np.eye(NO, dtype=int), [1, 0]), np.kron(np.eye(NO, dtype=int), [0, 1])]
|
||||
)
|
||||
# This is the permutation that transforms ud1ud2 to u12d12
|
||||
# That is this transforms FROM SPIN BOX to ORBITAL BOX => U
|
||||
# the inverse transformation is U.T u12d12 to ud1ud2
|
||||
# That is FROM ORBITAL BOX to SPIN BOX => U.T
|
||||
|
||||
# From now on everything is in SPIN BOX!!
|
||||
hh, ss = np.array(
|
||||
[
|
||||
U.T
|
||||
@ np.block([[h11[:, :, i], h12[:, :, i]], [h21[:, :, i], h22[:, :, i]]])
|
||||
@ U
|
||||
for i in range(dh.lattice.nsc.prod())
|
||||
]
|
||||
), np.array(
|
||||
[
|
||||
U.T
|
||||
@ np.block(
|
||||
[[sov[:, :, i], sov[:, :, i] * 0], [sov[:, :, i] * 0, sov[:, :, i]]]
|
||||
)
|
||||
@ U
|
||||
for i in range(dh.lattice.nsc.prod())
|
||||
]
|
||||
)
|
||||
|
||||
return hh, ss, NO
|
||||
|
||||
|
||||
def setup_pairs_and_magnetic_entities(
|
||||
magnetic_entities, pairs, dh, simulation_parameters
|
||||
):
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
magnetic_entities (_type_): _description_
|
||||
pairs (_type_): _description_
|
||||
dh (_type_): _description_
|
||||
simulation_parameters (_type_): _description_
|
||||
|
||||
Returns:
|
||||
_type_: _description_
|
||||
"""
|
||||
# for every site we have to store 3 Greens function (and the associated _tmp-s) in the 3 reference directions
|
||||
for mag_ent in magnetic_entities:
|
||||
parsed = parse_magnetic_entity(dh, **mag_ent) # parse orbital indexes
|
||||
mag_ent["orbital_indeces"] = parsed
|
||||
mag_ent["spin_box_indeces"] = blow_up_orbindx(
|
||||
parsed
|
||||
) # calculate spin box indexes
|
||||
# if orbital is not set use all
|
||||
if "l" not in mag_ent.keys():
|
||||
mag_ent["l"] = "all"
|
||||
if isinstance(mag_ent["atom"], int):
|
||||
mag_ent["tags"] = [
|
||||
f"[{mag_ent['atom']}]{dh.atoms[mag_ent['atom']].tag}({mag_ent['l']})"
|
||||
]
|
||||
mag_ent["xyz"] = [dh.xyz[mag_ent["atom"]]]
|
||||
if isinstance(mag_ent["atom"], list):
|
||||
mag_ent["tags"] = []
|
||||
mag_ent["xyz"] = []
|
||||
# iterate over atoms
|
||||
for atom_idx in mag_ent["atom"]:
|
||||
mag_ent["tags"].append(
|
||||
f"[{atom_idx}]{dh.atoms[atom_idx].tag}({mag_ent['l']})"
|
||||
)
|
||||
mag_ent["xyz"].append(dh.xyz[atom_idx])
|
||||
|
||||
# calculate size for Greens function generation
|
||||
spin_box_shape = len(mag_ent["spin_box_indeces"])
|
||||
|
||||
mag_ent["energies"] = (
|
||||
[]
|
||||
) # we will store the second order energy derivations here
|
||||
|
||||
# These will be the perturbed potentials from eq. 100
|
||||
mag_ent["Vu1"] = [] # so they are independent in memory
|
||||
mag_ent["Vu2"] = []
|
||||
|
||||
mag_ent["Gii"] = [] # Greens function
|
||||
mag_ent["Gii_tmp"] = [] # Greens function for parallelization
|
||||
for i in simulation_parameters["ref_xcf_orientations"]:
|
||||
# Rotations for every quantization axis
|
||||
mag_ent["Vu1"].append([])
|
||||
mag_ent["Vu2"].append([])
|
||||
# Greens functions for every quantization axis
|
||||
mag_ent["Gii"].append(
|
||||
np.zeros(
|
||||
(simulation_parameters["eset"], spin_box_shape, spin_box_shape),
|
||||
dtype="complex128",
|
||||
)
|
||||
)
|
||||
mag_ent["Gii_tmp"].append(
|
||||
np.zeros(
|
||||
(simulation_parameters["eset"], spin_box_shape, spin_box_shape),
|
||||
dtype="complex128",
|
||||
)
|
||||
)
|
||||
|
||||
# for every site we have to store 2x3 Greens function (and the associated _tmp-s)
|
||||
# in the 3 reference directions, because G_ij and G_ji are both needed
|
||||
for pair in pairs:
|
||||
# calculate distance
|
||||
xyz_ai = magnetic_entities[pair["ai"]]["xyz"]
|
||||
xyz_aj = magnetic_entities[pair["aj"]]["xyz"]
|
||||
xyz_aj = xyz_aj + pair["Ruc"] @ simulation_parameters["cell"]
|
||||
pair["dist"] = np.linalg.norm(xyz_ai - xyz_aj)
|
||||
|
||||
# calculate size for Greens function generation
|
||||
spin_box_shape_i = len(magnetic_entities[pair["ai"]]["spin_box_indeces"])
|
||||
spin_box_shape_j = len(magnetic_entities[pair["aj"]]["spin_box_indeces"])
|
||||
pair["tags"] = []
|
||||
for mag_ent in [magnetic_entities[pair["ai"]], magnetic_entities[pair["aj"]]]:
|
||||
tag = ""
|
||||
# get atoms of magnetic entity
|
||||
atoms_idx = mag_ent["atom"]
|
||||
orbitals = mag_ent["l"]
|
||||
|
||||
# if magnetic entity contains one atoms
|
||||
if isinstance(atoms_idx, int):
|
||||
tag += f"[{atoms_idx}]{dh.atoms[atoms_idx].tag}({orbitals})"
|
||||
|
||||
# if magnetic entity contains more than one atoms
|
||||
if isinstance(atoms_idx, list):
|
||||
# iterate over atoms
|
||||
atom_group = "{"
|
||||
for atom_idx in atoms_idx:
|
||||
atom_group += f"[{atom_idx}]{dh.atoms[atom_idx].tag}({orbitals})--"
|
||||
# end {} of the atoms in the magnetic entity
|
||||
tag += atom_group[:-2] + "}"
|
||||
pair["tags"].append(tag)
|
||||
pair["energies"] = [] # we will store the second order energy derivations here
|
||||
|
||||
pair["Gij"] = [] # Greens function
|
||||
pair["Gji"] = []
|
||||
pair["Gij_tmp"] = [] # Greens function for parallelization
|
||||
pair["Gji_tmp"] = []
|
||||
for i in simulation_parameters["ref_xcf_orientations"]:
|
||||
# Greens functions for every quantization axis
|
||||
pair["Gij"].append(
|
||||
np.zeros(
|
||||
(simulation_parameters["eset"], spin_box_shape_i, spin_box_shape_j),
|
||||
dtype="complex128",
|
||||
)
|
||||
)
|
||||
pair["Gij_tmp"].append(
|
||||
np.zeros(
|
||||
(simulation_parameters["eset"], spin_box_shape_i, spin_box_shape_j),
|
||||
dtype="complex128",
|
||||
)
|
||||
)
|
||||
pair["Gji"].append(
|
||||
np.zeros(
|
||||
(simulation_parameters["eset"], spin_box_shape_j, spin_box_shape_i),
|
||||
dtype="complex128",
|
||||
)
|
||||
)
|
||||
pair["Gji_tmp"].append(
|
||||
np.zeros(
|
||||
(simulation_parameters["eset"], spin_box_shape_j, spin_box_shape_i),
|
||||
dtype="complex128",
|
||||
)
|
||||
)
|
||||
|
||||
return pairs, magnetic_entities
|
@ -0,0 +1,19 @@
|
||||
# Copyright (c) [2024] [Daniel Pozsar]
|
||||
#
|
||||
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
# of this software and associated documentation files (the "Software"), to deal
|
||||
# in the Software without restriction, including without limitation the rights
|
||||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
# copies of the Software, and to permit persons to whom the Software is
|
||||
# furnished to do so, subject to the following conditions:
|
||||
#
|
||||
# The above copyright notice and this permission notice shall be included in all
|
||||
# copies or substantial portions of the Software.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
@ -0,0 +1,219 @@
|
||||
from argparse import ArgumentParser
|
||||
from pickle import dump, load
|
||||
|
||||
import numpy as np
|
||||
|
||||
default_args = dict(
|
||||
infile=None,
|
||||
outfile=None,
|
||||
scf_xcf_orientation=np.array([0, 0, 1]),
|
||||
ref_xcf_orientations=[
|
||||
dict(o=np.array([1, 0, 0]), vw=[np.array([0, 1, 0]), np.array([0, 0, 1])]),
|
||||
dict(o=np.array([0, 1, 0]), vw=[np.array([1, 0, 0]), np.array([0, 0, 1])]),
|
||||
dict(o=np.array([0, 0, 1]), vw=[np.array([1, 0, 0]), np.array([0, 1, 0])]),
|
||||
],
|
||||
kset=2,
|
||||
kdirs="xyz",
|
||||
ebot=None,
|
||||
eset=42,
|
||||
esetp=1000,
|
||||
)
|
||||
|
||||
# parser = ArgumentParser()
|
||||
# parser.add_argument('--input' , dest = 'infile' , default=None , help = 'Input file name')
|
||||
# parser.add_argument('--output' , dest = 'outfile', default=None , help = 'Output file name')
|
||||
|
||||
# parser.add_argument('--kset' , dest = 'kset' , default = 2 , type=int , help = 'k-space resolution of Jij calculation')
|
||||
# parser.add_argument('--kdirs' , dest = 'kdirs' , default = 'xyz' , help = 'Definition of k-space dimensionality')
|
||||
# parser.add_argument('--ebot' , dest = 'ebot' , default = None , type=float, help = 'Bottom energy of the contour')
|
||||
# parser.add_argument('--eset' , dest = 'eset' , default = 42 , type=int , help = 'Number of energy points on the contour')
|
||||
# parser.add_argument('--eset-p' , dest = 'esetp' , default = 1000 , type=int , help = 'Parameter tuning the distribution on the contour')
|
||||
# cmd_line_args = parser.parse_args()
|
||||
|
||||
|
||||
def save_pickle(outfile, data):
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
outfile (_type_): _description_
|
||||
data (_type_): _description_
|
||||
"""
|
||||
# save dictionary
|
||||
with open(outfile, "wb") as output_file:
|
||||
dump(data, output_file)
|
||||
|
||||
|
||||
def load_pickle(infile, data):
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
infile (_type_): _description_
|
||||
data (_type_): _description_
|
||||
|
||||
Returns:
|
||||
_type_: _description_
|
||||
"""
|
||||
with open(infile, "wb") as input_file:
|
||||
data = load(data, input_file)
|
||||
|
||||
return data
|
||||
|
||||
|
||||
def print_parameters(simulation_parameters):
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
simulation_parameters (_type_): _description_
|
||||
"""
|
||||
print(
|
||||
"================================================================================================================================================================"
|
||||
)
|
||||
print("Input file: ")
|
||||
print(simulation_parameters["infile"])
|
||||
print("Output file: ")
|
||||
print(simulation_parameters["outfile"])
|
||||
print(
|
||||
"Number of nodes in the parallel cluster: ",
|
||||
simulation_parameters["parallel_size"],
|
||||
)
|
||||
print(
|
||||
"================================================================================================================================================================"
|
||||
)
|
||||
print("Cell [Ang]: ")
|
||||
print(simulation_parameters["cell"])
|
||||
print(
|
||||
"================================================================================================================================================================"
|
||||
)
|
||||
print("DFT axis: ")
|
||||
print(simulation_parameters["scf_xcf_orientation"])
|
||||
print("Quantization axis and perpendicular rotation directions:")
|
||||
for ref in simulation_parameters["ref_xcf_orientations"]:
|
||||
print(ref["o"], " --» ", ref["vw"])
|
||||
print(
|
||||
"================================================================================================================================================================"
|
||||
)
|
||||
print("Parameters for the contour integral:")
|
||||
print("Number of k points: ", simulation_parameters["kset"])
|
||||
print("k point directions: ", simulation_parameters["kdirs"])
|
||||
print("Ebot: ", simulation_parameters["ebot"])
|
||||
print("Eset: ", simulation_parameters["eset"])
|
||||
print("Esetp: ", simulation_parameters["esetp"])
|
||||
print(
|
||||
"================================================================================================================================================================"
|
||||
)
|
||||
|
||||
|
||||
def print_atoms_and_pairs(magnetic_entities, pairs):
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
magnetic_entities (_type_): _description_
|
||||
pairs (_type_): _description_
|
||||
"""
|
||||
print("Atomic information: ")
|
||||
print(
|
||||
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
|
||||
)
|
||||
print(
|
||||
"[atom index]Element(orbitals) x [Ang] y [Ang] z [Ang] Sx Sy Sz Q Lx Ly Lz Jx Jy Jz"
|
||||
)
|
||||
print(
|
||||
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
|
||||
)
|
||||
# iterate over magnetic entities
|
||||
for mag_ent in magnetic_entities:
|
||||
# iterate over atoms
|
||||
for tag, xyz in zip(mag_ent["tags"], mag_ent["xyz"]):
|
||||
# coordinates and tag
|
||||
print(f"{tag} {xyz[0]} {xyz[1]} {xyz[2]}")
|
||||
print("")
|
||||
|
||||
print(
|
||||
"================================================================================================================================================================"
|
||||
)
|
||||
print("Anisotropy [meV]")
|
||||
print(
|
||||
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
|
||||
)
|
||||
print("Magnetic entity x [Ang] y [Ang] z [Ang]")
|
||||
print(
|
||||
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
|
||||
)
|
||||
# iterate over magnetic entities
|
||||
for mag_ent in magnetic_entities:
|
||||
# iterate over atoms
|
||||
for tag, xyz in zip(mag_ent["tags"], mag_ent["xyz"]):
|
||||
# coordinates and tag
|
||||
print(f"{tag} {xyz[0]} {xyz[1]} {xyz[2]}")
|
||||
print("Consistency check: ", mag_ent["K_consistency"])
|
||||
print("Anisotropy diag: ", mag_ent["K"])
|
||||
print("")
|
||||
|
||||
print(
|
||||
"================================================================================================================================================================"
|
||||
)
|
||||
print("Exchange [meV]")
|
||||
print(
|
||||
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
|
||||
)
|
||||
print("Magnetic entity1 Magnetic entity2 [i j k] d [Ang]")
|
||||
print(
|
||||
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
|
||||
)
|
||||
# iterate over pairs
|
||||
for pair in pairs:
|
||||
# print pair parameters
|
||||
print(
|
||||
f"{pair['tags'][0]} {pair['tags'][1]} {pair['Ruc']} d [Ang] {pair['dist']}"
|
||||
)
|
||||
# print magnetic parameters
|
||||
print("Isotropic: ", pair["J_iso"])
|
||||
print("DMI: ", pair["D"])
|
||||
print("Symmetric-anisotropy: ", pair["J_S"])
|
||||
print("J: ", pair["J"].flatten())
|
||||
print("Energies for debugging: ")
|
||||
print(np.array(pair["energies"]))
|
||||
print(
|
||||
"J_ii for debugging: (check if this is the same as in calculate_exchange_tensor)"
|
||||
)
|
||||
o1, o2, o3 = pair["energies"]
|
||||
print(np.array([o2[-1], o3[0], o1[0]]))
|
||||
print("Test J_xx = E(y,z) = E(z,y)")
|
||||
print(o2[-1], o3[-1])
|
||||
print("")
|
||||
|
||||
print(
|
||||
"================================================================================================================================================================"
|
||||
)
|
||||
|
||||
|
||||
def print_runtime_information(times):
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
times (_type_): _description_
|
||||
"""
|
||||
print("Runtime information: ")
|
||||
print(f"Total runtime: {times['end_time'] - times['start_time']} s")
|
||||
print(
|
||||
"----------------------------------------------------------------------------------------------------------------------------------------------------------------"
|
||||
)
|
||||
print(f"Initial setup: {times['setup_time'] - times['start_time']} s")
|
||||
print(
|
||||
f"Hamiltonian conversion and XC field extraction: {times['H_and_XCF_time'] - times['setup_time']:.3f} s"
|
||||
)
|
||||
print(
|
||||
f"Pair and site datastructure creatrions: {times['site_and_pair_dictionaries_time'] - times['H_and_XCF_time']:.3f} s"
|
||||
)
|
||||
print(
|
||||
f"k set cration and distribution: {times['k_set_time'] - times['site_and_pair_dictionaries_time']:.3f} s"
|
||||
)
|
||||
print(
|
||||
f"Rotating XC potential: {times['reference_rotations_time'] - times['k_set_time']:.3f} s"
|
||||
)
|
||||
print(
|
||||
f"Greens function inversion: {times['green_function_inversion_time'] - times['reference_rotations_time']:.3f} s"
|
||||
)
|
||||
print(
|
||||
f"Calculate energies and magnetic components: {times['end_time'] - times['green_function_inversion_time']:.3f} s"
|
||||
)
|
@ -0,0 +1,88 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
def calculate_anisotropy_tensor(mag_ent):
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
mag_ent (_type_): _description_
|
||||
|
||||
Returns:
|
||||
_type_: _description_
|
||||
"""
|
||||
|
||||
energies = mag_ent["energies"]
|
||||
Kxx = energies[1, 1] - energies[1, 0]
|
||||
Kyy = energies[0, 1] - energies[0, 0]
|
||||
Kzz = 0
|
||||
|
||||
calculated_diff = Kyy - Kxx
|
||||
expected_diff = energies[2, 0] - energies[2, 1]
|
||||
consistency_check = abs(calculated_diff - expected_diff)
|
||||
|
||||
return Kxx, Kyy, Kzz, consistency_check
|
||||
|
||||
|
||||
def calculate_exchange_tensor(pair):
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
pair (_type_): _description_
|
||||
|
||||
Returns:
|
||||
_type_: _description_
|
||||
"""
|
||||
energies = pair["energies"]
|
||||
# Initialize output arrays
|
||||
J = np.zeros((3, 3))
|
||||
D = np.zeros(3)
|
||||
|
||||
# J matrix calculations
|
||||
# J(1,1) = mean([DEij(2,2,2), DEij(2,2,3)])
|
||||
J[0, 0] = np.mean([energies[1, 3], energies[2, 3]])
|
||||
|
||||
# J(1,2) = -mean([DEij(1,2,3), DEij(2,1,3)])
|
||||
J[0, 1] = -np.mean([energies[2, 1], energies[2, 2]])
|
||||
J[1, 0] = J[0, 1]
|
||||
|
||||
# J(1,3) = -mean([DEij(1,2,2), DEij(2,1,2)])
|
||||
J[0, 2] = -np.mean([energies[1, 1], energies[1, 2]])
|
||||
J[2, 0] = J[0, 2]
|
||||
|
||||
# J(2,2) = mean([DEij(2,2,1), DEij(1,1,3)])
|
||||
J[1, 1] = np.mean([energies[0, 3], energies[2, 0]])
|
||||
|
||||
# J(2,3) = -mean([DEij(1,2,1), DEij(2,1,1)])
|
||||
J[1, 2] = -np.mean([energies[0, 1], energies[0, 2]])
|
||||
J[2, 1] = J[1, 2]
|
||||
|
||||
# J(3,3) = mean([DEij(1,1,1), DEij(1,1,2)])
|
||||
J[2, 2] = np.mean([energies[0, 0], energies[1, 0]])
|
||||
|
||||
# D vector calculations
|
||||
# D(1) = mean([DEij(1,2,1), -DEij(2,1,1)])
|
||||
D[0] = np.mean([energies[0, 1], -energies[0, 2]])
|
||||
|
||||
# D(2) = mean([DEij(2,1,2), -DEij(1,2,2)])
|
||||
D[1] = np.mean([energies[1, 2], -energies[1, 1]])
|
||||
|
||||
# D(3) = mean([DEij(1,2,3), -DEij(2,1,3)])
|
||||
D[2] = np.mean([energies[2, 1], -energies[2, 2]])
|
||||
|
||||
J_iso = np.trace(J) / 3
|
||||
J_S = (J - J_iso * np.eye(3)).flatten()
|
||||
|
||||
return J_iso, J_S, D, J
|
||||
|
||||
|
||||
def int_de_ke(traced, we):
|
||||
"""_summary_
|
||||
|
||||
Args:
|
||||
traced (_type_): _description_
|
||||
we (_type_): _description_
|
||||
|
||||
Returns:
|
||||
_type_: _description_
|
||||
"""
|
||||
return np.trapz(-1 / np.pi * np.imag(traced * we))
|
Loading…
Reference in new issue