almost working

class-solution
Daniel Pozsar 3 months ago
parent b11ab970d6
commit 7631cd38b6

@ -2,12 +2,12 @@
# TODO # TODO
- Definition of magnetic entities: [x] Definition of magnetic entities:
* Through simple sequence o forbitals in the unit cell * Through simple sequence o forbitals in the unit cell
* Through atom specification * Through atom specification
* Through atom and orbital specification * Through atom and orbital specification
- Separation of TR and TRB components of the Hamiltonian, Identification of the exchange field. [x] Separation of TR and TRB components of the Hamiltonian, Identification of the exchange field.
- Definition of commutator expressions, old projection matrix elements [x] Definition of commutator expressions, old projection matrix elements
- Efficient calculation of Green's functions [x] Efficient calculation of Green's functions
- Calculation of energy and momentum resolved derivatives [] Calculation of energy and momentum resolved derivatives
- Parallel BZ and serial energy integral [] Parallel BZ and serial energy integral

@ -23,7 +23,28 @@ from itertools import permutations, product
import numpy as np import numpy as np
from scipy.special import roots_legendre from scipy.special import roots_legendre
# Pauli matrices
tau_x = np.array([[0, 1], [1, 0]])
tau_y = np.array([[0, -1j], [1j, 0]])
tau_z = np.array([[1, 0], [0, -1]])
tau_0 = np.array([[1, 0], [0, 1]])
# define some useful functions # define some useful functions
def hsk(H, ss, sc_off, k=(0, 0, 0)):
"""
One way to speed up Hk and Sk generation
"""
k = np.asarray(k, np.float64) # this two conversion lines
k.shape = (-1,) # are from the sisl source
# this generates the list of phases
phases = np.exp(-1j * 2 * np.pi * k @ sc_off.T)
HK = np.einsum("abc,a->bc", H, phases)
SK = np.einsum("abc,a->bc", ss, phases)
return HK, SK
def make_contour(emin=-20, emax=0.0, enum=42, p=150): def make_contour(emin=-20, emax=0.0, enum=42, p=150):
@ -80,14 +101,7 @@ def make_kset(dirs="xyz", NUMK=20):
return kset return kset
# Pauli matrices def commutator(a, b):
tau_x = np.array([[0, 1], [1, 0]])
tau_y = np.array([[0, -1j], [1j, 0]])
tau_z = np.array([[1, 0], [0, -1]])
tau_0 = np.array([[1, 0], [0, 1]])
def comm(a, b):
"Shorthand for commutator" "Shorthand for commutator"
return a @ b - b @ a return a @ b - b @ a
@ -104,7 +118,7 @@ def tau_u(u):
def crossM(u): def crossM(u):
""" """
Definition for the cross-product matrix. Definition for the cross-product matrix.
Acting as a crossproduct with vector u. Acting as a cross product with vector u.
""" """
return np.array([[0, -u[2], u[1]], [u[2], 0, -u[0]], [-u[1], u[0], 0]]) return np.array([[0, -u[2], u[1]], [u[2], 0, -u[0]], [-u[1], u[0], 0]])
@ -152,6 +166,7 @@ def spin_tracer(M):
M12 = M[0::2, 1::2] M12 = M[0::2, 1::2]
M21 = M[1::2, 0::2] M21 = M[1::2, 0::2]
M22 = M[1::2, 1::2] M22 = M[1::2, 1::2]
M_o = dict() M_o = dict()
M_o["x"] = M12 + M21 M_o["x"] = M12 + M21
M_o["y"] = 1j * (M12 - M21) M_o["y"] = 1j * (M12 - M21)
@ -197,3 +212,15 @@ def blow_up_orbindx(orb_indices):
Function to blow up orbital indeces to make SPIN BOX indices. Function to blow up orbital indeces to make SPIN BOX indices.
""" """
return np.array([[2 * o, 2 * o + 1] for o in orb_indices]).flatten() return np.array([[2 * o, 2 * o + 1] for o in orb_indices]).flatten()
def calculate_exchange_tensor(pair):
o1, o2, o3 = pair["energies"] # o1=x, o2=y, o3=z
# dict(o=np.array([1, 0, 0]), vw=[np.array([0, 1, 0]), np.array([0, 0, 1])]),
# dict(o=np.array([0, 1, 0]), vw=[np.array([1, 0, 0]), np.array([0, 0, 1])]),
# dict(o=np.array([0, 0, 1]), vw=[np.array([1, 0, 0]), np.array([0, 1, 0])]),
J_ii = np.array([o2[-1], o3[0], o1[0]]) # xx, yy, zz
J_S = -0.5 * np.array([o3[1] + o3[2], o2[1] + o2[1], o1[1] + o1[2]]) # yz, zx, xy
D = 0.5 * np.array([o1[1] - o1[2], o2[2] - o2[1], o3[1] - o3[2]]) # x, y, z
return J_ii.sum() / 3, D, np.concatenate([J_ii[:2] - J_ii.sum()/3, J_S]).flatten()

@ -2,7 +2,7 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 10, "execution_count": 14,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -11,26 +11,12 @@
"os.environ[\"OPENBLAS_NUM_THREADS\"] = \"4\" # export OPENBLAS_NUM_THREADS=4 \n", "os.environ[\"OPENBLAS_NUM_THREADS\"] = \"4\" # export OPENBLAS_NUM_THREADS=4 \n",
"os.environ[\"MKL_NUM_THREADS\"] = \"4\" # export MKL_NUM_THREADS=6\n", "os.environ[\"MKL_NUM_THREADS\"] = \"4\" # export MKL_NUM_THREADS=6\n",
"os.environ[\"VECLIB_MAXIMUM_THREADS\"] = \"4\" # export VECLIB_MAXIMUM_THREADS=4\n", "os.environ[\"VECLIB_MAXIMUM_THREADS\"] = \"4\" # export VECLIB_MAXIMUM_THREADS=4\n",
"os.environ[\"NUMEXPR_NUM_THREADS\"] = \"4\" # export NUMEXPR_NUM_THREADS=6" "os.environ[\"NUMEXPR_NUM_THREADS\"] = \"4\""
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"from scipy.linalg import eigh\n",
"#import matplotlib.pyplot as plt\n",
"import sisl\n",
"import warnings\n",
"from grogu.useful import *"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 12, "execution_count": 15,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@ -39,21 +25,35 @@
"'0.14.3'" "'0.14.3'"
] ]
}, },
"execution_count": 12, "execution_count": 15,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
], ],
"source": [ "source": [
"np.set_printoptions(linewidth=2*75)\n", "import numpy as np\n",
"sisl.__version__" "import sisl\n",
"from grogu.useful import *\n",
"from mpi4py import MPI\n",
"from numpy.linalg import inv\n",
"import warnings\n",
"\n",
"sisl.__version__\n"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 13, "execution_count": 16,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of nodes in the parallel cluster: 1\n"
]
}
],
"source": [ "source": [
"# this cell mimicks an input file\n", "# this cell mimicks an input file\n",
"fdf = sisl.get_sile('/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf')\n", "fdf = sisl.get_sile('/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf')\n",
@ -62,7 +62,7 @@
"# list of reference directions for around which we calculate the derivatives\n", "# list of reference directions for around which we calculate the derivatives\n",
"# o is the quantization axis, v and w are two axes perpendicular to it\n", "# o is the quantization axis, v and w are two axes perpendicular to it\n",
"# at this moment the user has to supply o,v,w on the input. \n", "# at this moment the user has to supply o,v,w on the input. \n",
"# we can have some default sfor this\n", "# we can have some default for this\n",
"ref_xcf_orientations=[dict(o=np.array([1,0,0]),vw=[np.array([0,1,0]),np.array([0,0,1])]),\n", "ref_xcf_orientations=[dict(o=np.array([1,0,0]),vw=[np.array([0,1,0]),np.array([0,0,1])]),\n",
" dict(o=np.array([0,1,0]),vw=[np.array([1,0,0]),np.array([0,0,1])]),\n", " dict(o=np.array([0,1,0]),vw=[np.array([1,0,0]),np.array([0,0,1])]),\n",
" dict(o=np.array([0,0,1]),vw=[np.array([1,0,0]),np.array([0,1,0])]),]\n", " dict(o=np.array([0,0,1]),vw=[np.array([1,0,0]),np.array([0,1,0])]),]\n",
@ -80,60 +80,51 @@
" dict(ai=0,aj=2,Ruc=np.array([-1,0,0])),\n", " dict(ai=0,aj=2,Ruc=np.array([-1,0,0])),\n",
" dict(ai=1,aj=2,Ruc=np.array([-1,0,0]))]\n", " dict(ai=1,aj=2,Ruc=np.array([-1,0,0]))]\n",
"\n", "\n",
"# Bz sampling\n", "# Brilloun zone sampling and Green function contour integral\n",
"nk=np.array([10,10,0])" "kset = 20\n",
"kdirs = \"xy\"\n",
"ebot = -40\n",
"eset = 50\n",
"esetp = 10000\n",
"\n",
"\n",
"# MPI parameters\n",
"comm = MPI.COMM_WORLD\n",
"size = comm.Get_size()\n",
"rank = comm.Get_rank()\n",
"root_node = 0\n",
"if rank == root_node:\n",
" print('Number of nodes in the parallel cluster: ',size)\n"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 14, "execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"# digestion of the input\n", "# digestion of the input\n",
"# read in geometry and hamiltonian\n", "# read in hamiltonian\n",
"geo = fdf.read_geometry()\n",
"dh = fdf.read_hamiltonian()\n", "dh = fdf.read_hamiltonian()\n",
"\n", "\n",
"# unit cell index\n",
"uc_in_sc_idx=dh.lattice.sc_index([0,0,0])\n", "uc_in_sc_idx=dh.lattice.sc_index([0,0,0])\n",
"\n", "\n",
"# get indecies for orbitals of the magnetic entities\n", "\n",
"for i,d in enumerate(magnetic_entities):\n",
" parsed = parse_magnetic_entity(dh,**d)\n",
" magnetic_entities[i]['orbital_indeces'] = parsed\n",
" magnetic_entities[i]['spin_box_indeces'] = blow_up_orbindx(parsed)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"-5.82448514"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# WE WILL NOT NEED THIS!!\n", "# WE WILL NOT NEED THIS!!\n",
"eigfile=sisl.io.siesta.eigSileSiesta('/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.EIG')\n", "eigfile=sisl.io.siesta.eigSileSiesta('/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.EIG')\n",
"EF=eigfile.read_fermi_level()\n", "EF=eigfile.read_fermi_level()\n",
"EF" "\n",
] "\n",
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"NO=dh.no # shorthand for number of orbitals in the unit cell\n", "NO=dh.no # shorthand for number of orbitals in the unit cell\n",
"\n",
"# preprocessing Hamiltonian and overlap matrix elements\n", "# preprocessing Hamiltonian and overlap matrix elements\n",
"h11 = dh.tocsr(dh.M11r)\n", "h11 = dh.tocsr(dh.M11r)\n",
"h11 += dh.tocsr(dh.M11i)*1.0j\n", "h11 += dh.tocsr(dh.M11i)*1.0j\n",
@ -153,20 +144,15 @@
"\n", "\n",
"sov = dh.tocsr(dh.S_idx).toarray().reshape(NO,dh.n_s,NO).transpose(0,2,1).astype('complex128')\n", "sov = dh.tocsr(dh.S_idx).toarray().reshape(NO,dh.n_s,NO).transpose(0,2,1).astype('complex128')\n",
"\n", "\n",
"# Reorganization of Hamiltonian and overlap matrix elements to SPIN BOX representation\n",
"\n", "\n",
"# Reorganization of Hamiltonian and overlap matrix elements to SPIN BOX representation\n",
"U=np.vstack([np.kron(np.eye(NO,dtype=int),[1,0]),np.kron(np.eye(NO,dtype=int),[0,1])])\n", "U=np.vstack([np.kron(np.eye(NO,dtype=int),[1,0]),np.kron(np.eye(NO,dtype=int),[0,1])])\n",
"# This is the permutation that transforms ud1ud2 to u12d12\n", "# This is the permutation that transforms ud1ud2 to u12d12\n",
"# That is this transforms FROM SPIN BOX to ORBITAL BOX => U\n", "# That is this transforms FROM SPIN BOX to ORBITAL BOX => U\n",
"\n",
"# the inverse transformation is U.T u12d12 to ud1ud2\n", "# the inverse transformation is U.T u12d12 to ud1ud2\n",
"# That is FROM ORBITAL BOX to SPIN BOX => U.T\n", "# That is FROM ORBITAL BOX to SPIN BOX => U.T\n",
"\n", "\n",
"# this is a test\n", "# From now on everything is in SPIN BOX!!\n",
"# u12d12=np.array([np.kron([1,1],np.arange(NO)),np.kron([0,1],np.ones(NO))],dtype=int).T\n",
"# ud1ud2=np.array([np.kron(np.arange(NO),[1,1]),np.kron(np.ones(NO),[0,1])],dtype=int).T\n",
"# np.allclose(u12d12,U@ud1ud2)\n",
"\n",
"hh,ss = \\\n", "hh,ss = \\\n",
"np.array([U.T@np.block([[h11[:,:,i],h12[:,:,i]],\n", "np.array([U.T@np.block([[h11[:,:,i],h12[:,:,i]],\n",
" [h21[:,:,i],h22[:,:,i]]])@U for i in range(dh.lattice.nsc.prod())]), \\\n", " [h21[:,:,i],h22[:,:,i]]])@U for i in range(dh.lattice.nsc.prod())]), \\\n",
@ -189,516 +175,341 @@
"hTRB = (hh-hTR)/2\n", "hTRB = (hh-hTR)/2\n",
"\n", "\n",
"# extracting the exchange field\n", "# extracting the exchange field\n",
"traced=[spin_tracer(hTRB[i]) for i in range(dh.lattice.nsc.prod())]\n", "traced=[spin_tracer(hTRB[i]) for i in range(dh.lattice.nsc.prod())] # equation 77\n",
"\n",
"XCF = np.array([np.array([f['x'] for f in traced]),\n", "XCF = np.array([np.array([f['x'] for f in traced]),\n",
" np.array([f['y'] for f in traced]),\n", " np.array([f['y'] for f in traced]),\n",
" np.array([f['z'] for f in traced])])\n", " np.array([f['z'] for f in traced])]) # equation 77\n",
"\n",
"# Check if exchange field has scalar part\n", "# Check if exchange field has scalar part\n",
"max_xcfs=abs(np.array(np.array([f['c'] for f in traced]))).max()\n", "max_xcfs=abs(np.array(np.array([f['c'] for f in traced]))).max()\n",
"if max_xcfs > 1e-12:\n", "if max_xcfs > 1e-12:\n",
" warnings.warn(f\"Exchange field has non negligeble scalr part. Largest value is {max_xcfs}\")" " warnings.warn(f\"Exchange field has non negligible scalar part. Largest value is {max_xcfs}\")\n"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 17, "execution_count": 18,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"# collecting information for all proposed rotations, this might generate a lot of unnceessary data\n", "# for every site we have to store 3 Greens function (and the associated _tmp-s) in the 3 reference directions\n",
"# information being collected: \n", "for i, mag_ent in enumerate(magnetic_entities):\n",
"# - matrices rotating the direction of the exchange field to the proposed reference direction\n", " parsed = parse_magnetic_entity(dh,**mag_ent) # parse orbital indexes\n",
"# - rotated xc field \n", " magnetic_entities[i]['orbital_indeces'] = parsed\n",
"# - single commutators of the unit cell localized exchange field for the two variations perpendicular to the reference direction\n", " magnetic_entities[i]['spin_box_indeces'] = blow_up_orbindx(parsed) # calculate spin box indexes\n",
"# - double commutators of the unit cell localized exchange field for the two variations perpendicular to the reference direction\n", " spin_box_shape = len(mag_ent[\"spin_box_indeces\"]) # calculate size for Greens function generation\n",
"\n",
"\n",
"# Transformation matrices for rotating the exchange field\n",
"for i,orient in enumerate(ref_xcf_orientations):\n",
"\n",
" # obtain rotated exchange field \n",
" R=RotMa2b(scf_xcf_orientation,orient['o'])\n",
" \n",
" rot_XCF = np.einsum('ij,jklm->iklm',R, XCF)\n",
" rot_H_XCF = sum([np.kron(rot_XCF[i],tau) for i,tau in enumerate([tau_x,tau_y,tau_z])])\n",
" rot_H_XCF_uc = rot_H_XCF[uc_in_sc_idx]\n",
" \n",
" # obtain total Hamiltonian with the rotated exchange field\n",
" rot_H = hTRS+rot_H_XCF\n",
" \n",
" # Update magnetic entities with commutator data for each \n",
" for mag_ent in magnetic_entities:\n",
" mag_ent['Commutator_Data'] = []\n",
"\n", "\n",
" for u in orient['vw']:\n", " mag_ent['energies'] = [] # we will store the second order energy derivations here\n",
" \n", " \n",
" Tu = np.kron(np.eye(NO,dtype=int),tau_u(u))\n", " mag_ent['Gii'] = [] # Greens function\n",
" mag_ent['Gii_tmp'] = [] # Greens function for parallelization\n",
" mag_ent[\"Vu1\"] = [ list([]) for _ in range(len(ref_xcf_orientations))] # These will be the perturbed potentials from eq. 100\n",
" mag_ent[\"Vu2\"] = [ list([]) for _ in range(len(ref_xcf_orientations))]\n",
" for i in ref_xcf_orientations:\n",
" mag_ent['Gii'].append(np.zeros((eset, spin_box_shape, spin_box_shape),dtype='complex128')) # Greens functions for every quantization axis\n",
" mag_ent['Gii_tmp'].append(np.zeros((eset, spin_box_shape, spin_box_shape),dtype='complex128'))\n",
"\n",
"# for every site we have to store 2x3 Greens function (and the associated _tmp-s) in the 3 reference directions, because G_ij and G_ji are both needed\n",
"for pair in pairs:\n",
" spin_box_shape_i, spin_box_shape_j = len(magnetic_entities[pair[\"ai\"]][\"spin_box_indeces\"]), len(magnetic_entities[pair[\"aj\"]][\"spin_box_indeces\"]) # calculate size for Greens function generation\n",
" \n",
" pair['energies'] = [] # we will store the second order energy derivations here\n",
"\n", "\n",
" Vu1 = 1j/2*comm(rot_H_XCF_uc,Tu)\n", " pair['Gij'] = [] # Greens function\n",
" Vu2 = 1/8*comm(comm(Tu,rot_H_XCF_uc),Tu)\n", " pair['Gji'] = []\n",
" pair['Gij_tmp'] = [] # Greens function for parallelization\n",
" pair['Gji_tmp'] = []\n",
"\n", "\n",
" for mag_ent in magnetic_entities:\n", " pair[\"Vij\"] = [list([]) for _ in range(len(ref_xcf_orientations))] # These will be the perturbed potentials from eq. 100\n",
" idx = mag_ent['spin_box_indeces']\n", " pair[\"Vji\"] = [list([]) for _ in range(len(ref_xcf_orientations))]\n",
" mag_ent['Commutator_Data'].append(dict(Vu1=Vu1[idx,:][:,idx],\n",
" Vu2=Vu2[idx,:][:,idx]))\n",
"\n", "\n",
"\n", " for i in ref_xcf_orientations: \n",
"# TODO STORE ABOVE INFO!!!!!" " pair['Gij'].append(np.zeros((eset,spin_box_shape_i,spin_box_shape_j),dtype='complex128'))\n",
] " pair['Gij_tmp'].append(np.zeros((eset,spin_box_shape_i,spin_box_shape_j),dtype='complex128')) # Greens functions for every quantization axis\n",
}, " pair['Gji'].append(np.zeros((eset,spin_box_shape_j,spin_box_shape_i),dtype='complex128'))\n",
{ " pair['Gji_tmp'].append(np.zeros((eset,spin_box_shape_j,spin_box_shape_i),dtype='complex128'))\n"
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"k = np.array([0.11441,0.234432,0.0])\n",
"\n"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 19, "execution_count": 19,
"metadata": {}, "metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'magn_ent_idices' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[19], line 20\u001b[0m\n\u001b[1;32m 17\u001b[0m GK\u001b[38;5;241m=\u001b[39mvecs\u001b[38;5;129m@np\u001b[39m\u001b[38;5;241m.\u001b[39mdiag(\u001b[38;5;241m1\u001b[39m\u001b[38;5;241m/\u001b[39m(ze\u001b[38;5;241m-\u001b[39mvals))\u001b[38;5;129m@vecs\u001b[39m\u001b[38;5;241m.\u001b[39mconj()\u001b[38;5;241m.\u001b[39mT\n\u001b[1;32m 19\u001b[0m \u001b[38;5;66;03m#phase=np.exp(1j*np.dot(np.dot(k,dh.rcell),offset))\u001b[39;00m\n\u001b[0;32m---> 20\u001b[0m Gii\u001b[38;5;241m=\u001b[39mGK[\u001b[43mmagn_ent_idices\u001b[49m[ai],:][:,magn_ent_idices[ai]]\n\u001b[1;32m 21\u001b[0m Gjj\u001b[38;5;241m=\u001b[39mGK[magn_ent_idices[ai],:][:,magn_ent_idices[ai]]\n\u001b[1;32m 22\u001b[0m Gij\u001b[38;5;241m=\u001b[39mGK[magn_ent_idices[ai],:][:,magn_ent_idices[ai]]\u001b[38;5;241m*\u001b[39mnp\u001b[38;5;241m.\u001b[39mexp(\u001b[38;5;241m-\u001b[39mk\u001b[38;5;129m@offset\u001b[39m\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m2\u001b[39m\u001b[38;5;241m*\u001b[39mnp\u001b[38;5;241m.\u001b[39mpi)\n",
"\u001b[0;31mNameError\u001b[0m: name 'magn_ent_idices' is not defined"
]
}
],
"source": [
"#This goes inside the for loop for k \n",
"k = np.array([0,0.1,0.0])\n",
"\n",
"\n",
"phases = np.exp(-2j*np.pi*k@dh.lattice.sc_off.T)\n",
"\n",
"np.exp(-1j * np.dot(np.dot(np.dot(dh.rcell, k), dh.cell),dh.lattice.sc_off.T))\n",
"ss.shape,rot_H_XCF.shape,hTRS.shape,phases.shape\n",
"\n",
"HK=np.einsum('abc,a->bc',hTRS+rot_H_XCF,phases)\n",
"SK=np.einsum('abc,a->bc',ss,phases)\n",
"\n",
"vals,vecs=eigh(HK,SK)\n",
"\n",
"#This goes inside the for loop for ze\n",
"ze = -.1+0.000j\n",
"GK=vecs@np.diag(1/(ze-vals))@vecs.conj().T\n",
"\n",
"#phase=np.exp(1j*np.dot(np.dot(k,dh.rcell),offset))\n",
"Gii=GK[magn_ent_idices[ai],:][:,magn_ent_idices[ai]]\n",
"Gjj=GK[magn_ent_idices[ai],:][:,magn_ent_idices[ai]]\n",
"Gij=GK[magn_ent_idices[ai],:][:,magn_ent_idices[ai]]*np.exp(-k@offset*2*np.pi)\n",
"Gji=GK[magn_ent_idices[ai],:][:,magn_ent_idices[ai]]*np.exp( k@offset*2*np.pi)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"np.allclose(np.linalg.inv(ze*SK-HK),GK), abs(np.linalg.inv(ze*SK-HK)-GK).max()" "kset = make_kset(dirs=kdirs,NUMK=kset) # generate k space sampling\n",
"wkset = np.ones(len(kset)) / len(kset) # generate weights for k points\n",
"kpcs = np.array_split(kset,size) # split the k points based on MPI size\n"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 20,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"def hsk(dh,k=(0,0,0)):\n", "# collecting information for all proposed rotations, this might generate a lot of unnecessary data\n",
" '''\n", "# information being collected: \n",
" One way to speed up Hk and Sk generation\n", "# - matrices rotating the direction of the exchange field to the proposed reference direction\n",
" '''\n", "# - rotated xc field \n",
" k = np.asarray(k, np.float64) # this two conversion lines\n", "# - single commutators of the unit cell localized exchange field for the two variations perpendicular to the reference direction\n",
" k.shape = (-1,) # are from the sisl source\n", "# - double commutators of the unit cell localized exchange field for the two variations perpendicular to the reference direction\n",
"\n",
" # this generates the list of phases\n",
" phases = np.exp(-1j * np.dot(np.dot(np.dot(dh.rcell, k), dh.cell),\n",
" dh.lattice.sc_off.T))\n",
"\n", "\n",
" HK11 = np.einsum('abc,c->ab',dh.h11,phases)\n", "# this will contain all the data needed to calculate the energy variations upon rotation\n",
" HK12 = np.einsum('abc,c->ab',dh.h12,phases)\n", "hamiltonians = []\n",
" HK21 = np.einsum('abc,c->ab',dh.h21,phases)\n",
" HK22 = np.einsum('abc,c->ab',dh.h22,phases)\n",
"\n", "\n",
" SK = np.einsum('abc,c->ab',dh.sov,phases)\n", "# iterate over the reference directions (quantization axes)\n",
"for i,orient in enumerate(ref_xcf_orientations):\n",
"\n", "\n",
" return HK11,HK12,HK21,HK22,SK\n" " # obtain rotated exchange field \n",
] " R=RotMa2b(scf_xcf_orientation,orient['o'])\n",
}, " rot_XCF = np.einsum('ij,jklm->iklm',R, XCF)\n",
{ " rot_H_XCF = sum([np.kron(rot_XCF[i],tau) for i,tau in enumerate([tau_x,tau_y,tau_z])])\n",
"cell_type": "code", " rot_H_XCF_uc = rot_H_XCF[uc_in_sc_idx]\n",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
" \n", " \n",
" # obtain total Hamiltonian with the rotated exchange field\n",
" rot_H = hTRS+rot_H_XCF # equation 76\n",
"\n", "\n",
"rot_xcf_mats=[]\n", " hamiltonians.append(dict(orient=orient['o'], H=rot_H, rotations=[])) # store orientation and rotated Hamiltonian\n",
"for i,rot in enumerate(rots):\n", " \n",
" R=RotM(*rot) # rotation matrix to go from scf to reference direction\n", " for u in orient['vw']: # these are the infinitezimal rotations (for now) perpendicular to the quantization axis\n",
" R@scf_xcf_orientation # exchange field orientation \n", " Tu = np.kron(np.eye(NO,dtype=int),tau_u(u)) # section 2.H\n",
"\n",
"\n",
"rot_xcf_mats = [RotM(*rot) for rot in rots] \n",
"# directions to ratate around \n",
"dirs_xcf = [R@scf_xcf_orientation for R in rot_xcf_mats]\n",
"dirs_deriv=[]\n",
"for o in dirs_xcf:\n",
" x,y,z = np.eye(3)\n",
" R = RotMa2b(z,o)\n",
" dirs_deriv.append([R@x,R@y])\n",
"\n",
"\n",
"# geting the exchange field part of the reference Hamiltonians for the rotated exchange field\n",
"dh.hxc_rots=[]\n",
"for mtx in rot_xcf_mats:\n",
" rotated_xcf = np.einsum('ij,jklm->iklm',mtx, XCF)\n",
" dh.hxc_rots.append(sum([np.kron(rotated_xcf[i],tau) \n",
" for i,tau in enumerate([tau_x,tau_y,tau_z]) ]))\n",
"\n",
"\n", "\n",
" Vu1 = 1j/2*commutator(rot_H_XCF_uc,Tu) # equation 100\n",
" Vu2 = 1/8*commutator(commutator(Tu,rot_H_XCF_uc),Tu) # equation 100\n",
"\n", "\n",
"cummutators=[]\n", " for mag_ent in magnetic_entities:\n",
" mag_ent[\"Vu1\"][i].append(Vu1[:, mag_ent[\"spin_box_indeces\"]][mag_ent[\"spin_box_indeces\"], :]) # fill up the perturbed potentials (for now) based on the on-site projections\n",
" mag_ent[\"Vu2\"][i].append(Vu2[:, mag_ent[\"spin_box_indeces\"]][mag_ent[\"spin_box_indeces\"], :])\n",
"\n", "\n",
"\n" " for pair in pairs:\n",
" ai = magnetic_entities[pair[\"ai\"]][\"spin_box_indeces\"] # get the pair orbital sizes from the magnetic entities\n",
" aj = magnetic_entities[pair[\"aj\"]][\"spin_box_indeces\"]\n",
" pair[\"Vij\"][i].append(Vu1[:, ai][aj, :]) # fill up the perturbed potentials (for now) based on the on-site projections\n",
" pair[\"Vji\"][i].append(Vu1[:, aj][ai, :])\n"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 21,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of magnetic entities being calculated: 4\n",
"We have to calculate the Greens function for three reference direction and we are going to calculate 15 energy integrals per site.\n",
"The shape of the Hamiltonian and the Greens function is 84x84.\n"
]
}
],
"source": [ "source": [
"i=0\n", "if rank == root_node:\n",
" print('Number of magnetic entities being calculated: ',len(magnetic_entities))\n",
" print('We have to calculate the Greens function for three reference direction and we are going to calculate 15 energy integrals per site.')\n",
" print(f'The shape of the Hamiltonian and the Greens function is {NO}x{NO}.')\n",
"comm.Barrier()\n",
"#----------------------------------------------------------------------\n",
"\n",
"# make energy contour \n",
"# we are working in eV now !\n",
"# and sisil shifts E_F to 0 !\n",
"cont = make_contour(emin=ebot,enum=eset,p=esetp)\n",
"eran = cont.ze\n",
"\n",
"#---------------------------------------------------------------------- \n",
"# sampling the integrand on the contour and the BZ\n",
"for k in kpcs[rank]:\n",
" wk = wkset[rank] # weight of k point in BZ integral\n",
" for i, hamiltonian_orientation in enumerate(hamiltonians): # iterate over reference directions\n",
" # calculate Greens function\n",
" H = hamiltonian_orientation[\"H\"]\n",
" HK,SK = hsk(H, ss, dh.sc_off, k)\n",
" Gk = inv(SK * eran.reshape(eset, 1, 1) - HK)\n",
" \n",
" # store the Greens function slice of the magnetic entities (for now) based on the on-site projections\n",
" for mag_ent in magnetic_entities:\n",
" mag_ent[\"Gii_tmp\"][i] += Gk[:,mag_ent[\"spin_box_indeces\"]][...,mag_ent[\"spin_box_indeces\"]] * wk\n",
"\n",
" for pair in pairs:\n",
" # add phase shift based on the cell difference\n",
" phase=np.exp(1j * 2 * np.pi * k @ pair[\"Ruc\"].T)\n",
" \n",
" # get the pair orbital sizes from the magnetic entities\n",
" ai = magnetic_entities[pair[\"ai\"]][\"spin_box_indeces\"]\n",
" aj = magnetic_entities[pair[\"aj\"]][\"spin_box_indeces\"]\n",
"\n",
" # store the Greens function slice of the magnetic entities (for now) based on the on-site projections\n",
" pair['Gij_tmp'][i] += Gk[:,ai][..., aj] * phase * wk\n",
" pair['Gji_tmp'][i] += Gk[:,aj][..., ai] * phase * wk\n",
"\n",
"# summ reduce partial results of mpi nodes\n",
"for i in range(len(hamiltonians)):\n",
" for mag_ent in magnetic_entities:\n",
" comm.Reduce(mag_ent[\"Gii_tmp\"][i], mag_ent[\"Gii\"][i], root=root_node)\n",
"\n", "\n",
"dh.hxc_rots[i][uc_in_sc_idx]" " for pair in pairs:\n",
] " comm.Reduce(pair[\"Gij_tmp\"][i], pair[\"Gij\"][i], root=root_node)\n",
}, " comm.Reduce(pair[\"Gji_tmp\"][i], pair[\"Gji\"][i], root=root_node)\n"
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dh.hTRS.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"np.kron(np.random.rand(3,3),tau_x)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dh.hh"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Sanity check for the exchange field orientations\n",
"xcf_test=np.array([[abs(xcfield[i].c).max(),\n",
" abs(xcfield[i].x).max(),\n",
" abs(xcfield[i].y).max(),\n",
" abs(xcfield[i].z).max()] for i in range(dh.lattice.nsc.prod())])\n",
"# Check how the exchange field components behave\n",
"plt.plot(np.linalg.norm(dh.lattice.sc_off,axis=1),xcf_test[:,0],'o',label='scalar')\n",
"plt.plot(np.linalg.norm(dh.lattice.sc_off,axis=1),xcf_test[:,1],'o',label='x')\n",
"plt.plot(np.linalg.norm(dh.lattice.sc_off,axis=1),xcf_test[:,2],'o',label='y')\n",
"plt.plot(np.linalg.norm(dh.lattice.sc_off,axis=1),xcf_test[:,3],'o',label='z')\n",
"plt.yscale('log')\n",
"plt.ylim(1e-22,1e1)\n",
"plt.legend()"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"i=41\n",
"DAT=np.vstack([np.hstack([dh.h11[:,:,i]+EF*dh.sov[:,:,i],dh.h12[:,:,i]]),\n",
" np.hstack([dh.h21[:,:,i], dh.h22[:,:,i]]+EF*dh.sov[:,:,i])])\n",
"dh.lattice.sc_off[i]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for i,v in enumerate(dh.lattice.sc_off):\n",
" if np.allclose(v,np.array([1,0,0])):\n",
" print(i)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.pcolor((U.T@DAT@U)[:6,:6].imag)\n",
"plt.colorbar()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dh.h11 = dh.tocsr(dh.M11r)\n",
"dh.h11 += dh.tocsr(dh.M11i)*1.0j\n",
"dh.h11 = dh.h11.toarray().astype('complex128')\n",
"dh.h22 = dh.tocsr(dh.M22r)\n",
"dh.h22 += dh.tocsr(dh.M22i)*1.0j\n",
"dh.h22 = dh.h22.toarray().astype('complex128')\n",
"\n",
"dh.h12 = dh.tocsr(dh.M12r)\n",
"dh.h12 += dh.tocsr(dh.M12i)*1.0j\n",
"dh.h12 = dh.h12.toarray().astype('complex128')\n",
"dh.h21 = dh.tocsr(dh.M21r)\n",
"dh.h21 += dh.tocsr(dh.M21i)*1.0j\n",
"dh.h21 = dh.h21.toarray().reshape(dh.no,dh.n_s,dh.no).transpose(0,2,1).astype('complex128')\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dh.tocsr(dh.S_idx"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"def hsk(dh,k=(0,0,0)):\n", "# split magnetic entities and pairs over MPI nodes\n",
" '''\n", "mag_ent_parallel_set = np.array_split(magnetic_entities,size)\n",
" One way to speed up Hk and Sk generation\n", "pairs_parallel_set = np.array_split(pairs,size)\n",
" '''\n",
" k = np.asarray(k, np.float64) # this two conversion lines\n",
" k.shape = (-1,) # are from the sisl source\n",
"\n", "\n",
" # this generates the list of phases\n", "# iterate over the magnetic entities\n",
" phases = np.exp(-1j * np.dot(np.dot(np.dot(dh.rcell, k), dh.cell),\n", "for tracker, mag_ent in enumerate(mag_ent_parallel_set[rank]):\n",
" dh.lattice.sc_off.T))\n", " # iterate over the quantization axes\n",
" for i, Gii in enumerate(mag_ent[\"Gii\"]):\n",
" storage = []\n",
" # iterate over the first and second order local perturbations\n",
" for Vu1, Vu2 in zip(mag_ent[\"Vu1\"][i], mag_ent[\"Vu2\"][i]):\n",
" # The Szunyogh-Lichtenstein formula\n",
" traced = np.trace((Vu2 @ Gii + 0.5 * Gii @ Vu1 @ Gii),axis1=1,axis2=2)\n",
" # evaluation of the contour integral\n",
" storage.append(np.trapz(-1/np.pi * np.imag(traced * cont.we)))\n",
"\n", "\n",
" HK11 = np.einsum('abc,c->ab',dh.h11,phases)\n", " # fill up the magnetic entities dictionary with the energies\n",
" HK12 = np.einsum('abc,c->ab',dh.h12,phases)\n", " idx = np.array([len(mag_ent_parallel_set[i]) for i in range(rank)]).sum() + tracker\n",
" HK21 = np.einsum('abc,c->ab',dh.h21,phases)\n", " magnetic_entities[int(idx)][\"energies\"].append(storage)\n",
" HK22 = np.einsum('abc,c->ab',dh.h22,phases)\n",
"\n", "\n",
" SK = np.einsum('abc,c->ab',dh.sov,phases)\n", "# iterate over the pairs\n",
"for tracker, pair in enumerate(pairs_parallel_set[rank]):\n",
" # iterate over the quantization axes\n",
" for i, (Gij, Gji) in enumerate(zip(pair[\"Gij\"], pair[\"Gji\"])):\n",
" site_i = magnetic_entities[pair[\"ai\"]]\n",
" site_j = magnetic_entities[pair[\"aj\"]]\n",
"\n", "\n",
" return HK11,HK12,HK21,HK22,SK\n" " storage = []\n",
] " # iterate over the first order local perturbations in all possible orientations for the two sites\n",
}, " for Vui in site_i[\"Vu1\"][i]:\n",
{ " for Vuj in site_j[\"Vu1\"][i]:\n",
"cell_type": "code", " # The Szunyogh-Lichtenstein formula\n",
"execution_count": null, " traced = np.trace((Vui @ Gij @ Vuj @ Gji),axis1=1,axis2=2)\n",
"metadata": {}, " # evaluation of the contour integral\n",
"outputs": [], " storage.append(np.trapz(-1/np.pi * np.imag(traced * cont.we)))\n",
"source": [
"myHk=(lambda x:np.vstack([np.hstack([x[0],x[1]]),\n",
" np.hstack([x[2],x[3]])]))(hsk(dh))\n",
"mySk=(lambda x:np.vstack([np.hstack([x[-1],0*x[-1]]),\n",
" np.hstack([0*x[-1],x[-1]])]))(hsk(dh))\n",
"\n",
"myHkshift=myHk+EF*mySk"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"H0=np.vstack( [np.hstack([dh.h11[:,:,0],dh.h12[:,:,0]]),\n",
" np.hstack([dh.h21[:,:,0],dh.h22[:,:,0]])])\n",
"\n", "\n",
"H0shifted=np.vstack( [np.hstack([dh.h11[:,:,0]+EF*dh.sov[:,:,0],dh.h12[:,:,0]]),\n", " # fill up the pairs dictionary with the energies\n",
" np.hstack([dh.h21[:,:,0], dh.h22[:,:,0]+EF*dh.sov[:,:,0]])])" " idx = np.array([len(pairs_parallel_set[i]) for i in range(rank)]).sum() + tracker\n",
] " pairs[int(idx)][\"energies\"].append(storage)\n"
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"(U.T@H0shifted@U)[:3,:3]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.pcolor((U.T@H0shifted@U)[:5,:5])\n",
"plt.colorbar()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"np.linalg.eigvalsh(myHk+EF*mySk)"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 23,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"dh.Hk().toarray()[:3,:3]" "def calculate_exchange_tensor(pair):\n",
" Eo, Ev, Ew = pair[\"energies\"]\n",
" J = np.array([Ew[-1], Ev[-1], Eo[0]]) # xx, yy, zz\n",
" JS = -0.5 * np.array([Eo[1] + Eo[2], Ev[1] + Ev[2], Ew[1] + Ew[2]]) # yz, zx, xy\n",
" D = 0.5 * np.array([Eo[1] - Eo[2], Ev[2] - Ev[1], Ew[1] - Ew[2]]) # x, y, z\n",
" return J.sum()/3 * 1000"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 24,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
"source": [ {
"plt.matshow(np.abs(dh.Hk().toarray()-myHk))\n", "name": "stdout",
"plt.colorbar()" "output_type": "stream",
] "text": [
}, "-60.72359053548613\n",
{ "-60.531975234450115\n",
"cell_type": "code", "-60.524676226428824\n",
"execution_count": null, "-6.55042989834691\n",
"metadata": {}, "-6.047933492978864\n"
"outputs": [], ]
}
],
"source": [ "source": [
"plt.plot(np.linalg.eigvalsh(dh.Hk().toarray())-np.linalg.eigvalsh(myHk))" "print(calculate_exchange_tensor(pairs[0])) # isotropic should be -82 meV\n",
"print(calculate_exchange_tensor(pairs[1])) # these should all be around -41.9 in the isotropic part\n",
"print(calculate_exchange_tensor(pairs[2])) # these should all be around -41.9 in the isotropic part\n",
"print(calculate_exchange_tensor(pairs[3])) # these should all be around -41.9 in the isotropic part\n",
"print(calculate_exchange_tensor(pairs[4])) # these should all be around -41.9 in the isotropic part\n"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 25,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"data": {
"text/plain": [
"-6.043716409664797"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [ "source": [
"magnetic_entities = [parse_magnetic_entity(dh,atom=[0,1],l=2),parse_magnetic_entity(dh,atom=2,l=2)]" "-61.33097171216109\n",
"-60.52198328932686\n",
"-60.51657719027764\n",
"-6.545208546361317\n",
"-6.043716409664797"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 26,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {}, "metadata": {},
"outputs": [
{
"ename": "SyntaxError",
"evalue": "invalid syntax (1876172784.py, line 5)",
"output_type": "error",
"traceback": [
"\u001b[0;36m Cell \u001b[0;32mIn[26], line 5\u001b[0;36m\u001b[0m\n\u001b[0;31m ========================================\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n"
]
}
],
"source": [ "source": [
"# TODO\n", "# symmetrizing Hamiltonian and overlap matrix to make them hermitian \n",
"\n", "# Check if exchange field has scalar part\n",
"- Definition of magnetic entities:\n", "# parallel over integrals\n",
" * Through simple sequence o forbitals in the unit cell\n", "\n",
" * Through atom specification\n", "========================================\n",
" * Through atom and orbital specification\n", " \n",
"- Separation of TR and TRB components of the Hamiltonian, Identification of the exchange field. \n", "Atom Angstrom\n",
"- Definition of commutator expressions, old projection matrix elements\n", "# Label, x y z Sx Sy Sz #Q Lx Ly Lz Jx Jy Jz\n",
"- Efficient calculation of Green's functions\n", "--------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n",
"- Calculation of energy and momentum resolved derivatives\n", "Te1 1.8955 1.0943 13.1698 -0.0000 0.0000 -0.1543 # 5.9345 -0.0000 0.0000 -0.0537 -0.0000 0.0000 -0.2080 \n",
"- Parallel BZ and serial energy integral" "Te2 1.8955 1.0943 7.4002 0.0000 -0.0000 -0.1543 # 5.9345 0.0000 -0.0000 -0.0537 0.0000 -0.0000 -0.2080 \n",
"Ge3 -0.0000 2.1887 10.2850 0.0000 0.0000 -0.1605 # 3.1927 -0.0000 0.0000 0.0012 0.0000 0.0000 -0.1593 \n",
"Fe4 -0.0000 0.0000 11.6576 0.0001 -0.0001 2.0466 # 8.3044 0.0000 -0.0000 0.1606 0.0001 -0.0001 2.2072 \n",
"Fe5 -0.0000 0.0000 8.9124 -0.0001 0.0001 2.0466 # 8.3044 -0.0000 0.0000 0.1606 -0.0001 0.0001 2.2072 \n",
"Fe6 1.8955 1.0944 10.2850 0.0000 0.0000 1.5824 # 8.3296 -0.0000 -0.0000 0.0520 -0.0000 0.0000 1.6344 \n",
"==================================================================================================================================\n",
" \n",
"Exchange meV\n",
"--------------------------------------------------------------------------------\n",
"# at1 at2 i j k # d (Ang)\n",
"--------------------------------------------------------------------------------\n",
"Fe4 Fe5 0 0 0 # 2.7452\n",
"Isotropic -82.0854\n",
"DMI 0.12557 -0.00082199 6.9668e-08\n",
"Symmetric-anisotropy -0.60237 -0.83842 -0.00032278 -1.2166e-05 -3.3923e-05\n",
"--------------------------------------------------------------------------------\n",
"Fe4 Fe6 0 0 0 # 2.5835\n",
"Isotropic -41.9627\n",
"DMI 1.1205 -1.9532 0.0018386\n",
"Symmetric-anisotropy 0.26007 -0.00013243 0.12977 -0.069979 -0.042066\n",
"--------------------------------------------------------------------------------\n"
] ]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
} }
], ],
"metadata": { "metadata": {

@ -0,0 +1,451 @@
import os
from sys import stdout
from tqdm import tqdm
from timeit import default_timer as timer
os.environ["OMP_NUM_THREADS"] = "1" # export OMP_NUM_THREADS=4
os.environ["OPENBLAS_NUM_THREADS"] = "1" # export OPENBLAS_NUM_THREADS=4
os.environ["MKL_NUM_THREADS"] = "1" # export MKL_NUM_THREADS=6
os.environ["VECLIB_MAXIMUM_THREADS"] = "1" # export VECLIB_MAXIMUM_THREADS=4
os.environ["NUMEXPR_NUM_THREADS"] = "1" # export NUMEXPR_NUM_THREADS=6
import numpy as np
import sisl
from grogu.useful import *
from mpi4py import MPI
from numpy.linalg import inv
import warnings
start_time = timer()
# this cell mimicks an input file
fdf = sisl.get_sile(
"/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf"
)
# this information needs to be given at the input!!
scf_xcf_orientation = np.array([0, 0, 1]) # z
# list of reference directions for around which we calculate the derivatives
# o is the quantization axis, v and w are two axes perpendicular to it
# at this moment the user has to supply o,v,w on the input.
# we can have some default for this
ref_xcf_orientations = [
dict(o=np.array([1, 0, 0]), vw=[np.array([0, 1, 0]), np.array([0, 0, 1])]),
dict(o=np.array([0, 1, 0]), vw=[np.array([1, 0, 0]), np.array([0, 0, 1])]),
dict(o=np.array([0, 0, 1]), vw=[np.array([1, 0, 0]), np.array([0, 1, 0])]),
]
# human readable definition of magnetic entities
magnetic_entities = [
dict(atom=3, l=2),
dict(atom=4, l=2),
dict(atom=5, l=2),
# dict(atom=[3, 4]),
]
# pair information
pairs = [
dict(ai=0, aj=1, Ruc=np.array([0, 0, 0])), # isotropic should be -82 meV
dict(ai=0, aj=2, Ruc=np.array([0, 0, 0])), # these should all be around -41.9 in the isotropic part
# dict(ai=1, aj=2, Ruc=np.array([0, 0, 0])),
# dict(ai=0, aj=2, Ruc=np.array([-1, 0, 0])),
# dict(ai=1, aj=2, Ruc=np.array([-1, 0, 0])),
]
# Brilloun zone sampling and Green function contour integral
kset = 20
kdirs = "xy"
ebot = -30
eset = 100
esetp = 10000
# MPI parameters
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
root_node = 0
if rank == root_node:
print("Number of nodes in the parallel cluster: ", size)
simulation_parameters = dict(path="Not yet specified.",
scf_xcf_orientation=scf_xcf_orientation,
ref_xcf_orientations=ref_xcf_orientations,
kset=kset,
kdirs=kdirs,
ebot=ebot,
eset=eset,
esetp=esetp,
parallel_size=size)
# digestion of the input
# read in hamiltonian
dh = fdf.read_hamiltonian()
try:
simulation_parameters["geom"] = fdf.read_geometry()
except:
print("Error reading geometry.")
# unit cell index
uc_in_sc_idx = dh.lattice.sc_index([0, 0, 0])
setup_time = timer()
NO = dh.no # shorthand for number of orbitals in the unit cell
# preprocessing Hamiltonian and overlap matrix elements
h11 = dh.tocsr(dh.M11r)
h11 += dh.tocsr(dh.M11i) * 1.0j
h11 = h11.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
h22 = dh.tocsr(dh.M22r)
h22 += dh.tocsr(dh.M22i) * 1.0j
h22 = h22.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
h12 = dh.tocsr(dh.M12r)
h12 += dh.tocsr(dh.M12i) * 1.0j
h12 = h12.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
h21 = dh.tocsr(dh.M21r)
h21 += dh.tocsr(dh.M21i) * 1.0j
h21 = h21.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
sov = (
dh.tocsr(dh.S_idx)
.toarray()
.reshape(NO, dh.n_s, NO)
.transpose(0, 2, 1)
.astype("complex128")
)
# Reorganization of Hamiltonian and overlap matrix elements to SPIN BOX representation
U = np.vstack(
[np.kron(np.eye(NO, dtype=int), [1, 0]), np.kron(np.eye(NO, dtype=int), [0, 1])]
)
# This is the permutation that transforms ud1ud2 to u12d12
# That is this transforms FROM SPIN BOX to ORBITAL BOX => U
# the inverse transformation is U.T u12d12 to ud1ud2
# That is FROM ORBITAL BOX to SPIN BOX => U.T
# From now on everything is in SPIN BOX!!
hh, ss = np.array(
[
U.T @ np.block([[h11[:, :, i], h12[:, :, i]], [h21[:, :, i], h22[:, :, i]]]) @ U
for i in range(dh.lattice.nsc.prod())
]
), np.array(
[
U.T
@ np.block([[sov[:, :, i], sov[:, :, i] * 0], [sov[:, :, i] * 0, sov[:, :, i]]])
@ U
for i in range(dh.lattice.nsc.prod())
]
)
# symmetrizing Hamiltonian and overlap matrix to make them hermitian
for i in range(dh.lattice.sc_off.shape[0]):
j = dh.lattice.sc_index(-dh.lattice.sc_off[i])
h1, h1d = hh[i], hh[j]
hh[i], hh[j] = (h1 + h1d.T.conj()) / 2, (h1d + h1.T.conj()) / 2
s1, s1d = ss[i], ss[j]
ss[i], ss[j] = (s1 + s1d.T.conj()) / 2, (s1d + s1.T.conj()) / 2
# identifying TRS and TRB parts of the Hamiltonian
TAUY = np.kron(np.eye(NO), tau_y)
hTR = np.array([TAUY @ hh[i].conj() @ TAUY for i in range(dh.lattice.nsc.prod())])
hTRS = (hh + hTR) / 2
hTRB = (hh - hTR) / 2
# extracting the exchange field
traced = [spin_tracer(hTRB[i]) for i in range(dh.lattice.nsc.prod())] # equation 77
XCF = np.array(
[
np.array([f["x"] for f in traced]),
np.array([f["y"] for f in traced]),
np.array([f["z"] for f in traced]),
]
) # equation 77
# Check if exchange field has scalar part
max_xcfs = abs(np.array(np.array([f["c"] for f in traced]))).max()
if max_xcfs > 1e-12:
warnings.warn(
f"Exchange field has non negligible scalar part. Largest value is {max_xcfs}"
)
H_and_XCF_time = timer()
# for every site we have to store 3 Greens function (and the associated _tmp-s) in the 3 reference directions
for i, mag_ent in enumerate(magnetic_entities):
parsed = parse_magnetic_entity(dh, **mag_ent) # parse orbital indexes
magnetic_entities[i]["orbital_indeces"] = parsed
magnetic_entities[i]["spin_box_indeces"] = blow_up_orbindx(
parsed
) # calculate spin box indexes
spin_box_shape = len(
mag_ent["spin_box_indeces"]
) # calculate size for Greens function generation
mag_ent["energies"] = [] # we will store the second order energy derivations here
mag_ent["Gii"] = [] # Greens function
mag_ent["Gii_tmp"] = [] # Greens function for parallelization
mag_ent["Vu1"] = [
list([]) for _ in range(len(ref_xcf_orientations))
] # These will be the perturbed potentials from eq. 100
mag_ent["Vu2"] = [list([]) for _ in range(len(ref_xcf_orientations))]
for i in ref_xcf_orientations:
mag_ent["Gii"].append(
np.zeros((eset, spin_box_shape, spin_box_shape), dtype="complex128")
) # Greens functions for every quantization axis
mag_ent["Gii_tmp"].append(
np.zeros((eset, spin_box_shape, spin_box_shape), dtype="complex128")
)
# for every site we have to store 2x3 Greens function (and the associated _tmp-s)
# in the 3 reference directions, because G_ij and G_ji are both needed
for pair in pairs:
spin_box_shape_i, spin_box_shape_j = len(
magnetic_entities[pair["ai"]]["spin_box_indeces"]
), len(
magnetic_entities[pair["aj"]]["spin_box_indeces"]
) # calculate size for Greens function generation
pair["energies"] = [] # we will store the second order energy derivations here
pair["Gij"] = [] # Greens function
pair["Gji"] = []
pair["Gij_tmp"] = [] # Greens function for parallelization
pair["Gji_tmp"] = []
pair["Vij"] = [
list([]) for _ in range(len(ref_xcf_orientations))
] # These will be the perturbed potentials from eq. 100
pair["Vji"] = [list([]) for _ in range(len(ref_xcf_orientations))]
for i in ref_xcf_orientations:
pair["Gij"].append(
np.zeros((eset, spin_box_shape_i, spin_box_shape_j), dtype="complex128")
)
pair["Gij_tmp"].append(
np.zeros((eset, spin_box_shape_i, spin_box_shape_j), dtype="complex128")
) # Greens functions for every quantization axis
pair["Gji"].append(
np.zeros((eset, spin_box_shape_j, spin_box_shape_i), dtype="complex128")
)
pair["Gji_tmp"].append(
np.zeros((eset, spin_box_shape_j, spin_box_shape_i), dtype="complex128")
)
site_and_pair_dictionaries_time = timer()
kset = make_kset(dirs=kdirs, NUMK=kset) # generate k space sampling
wkset = np.ones(len(kset)) / len(kset) # generate weights for k points
kpcs = np.array_split(kset, size) # split the k points based on MPI size
kpcs[root_node] = tqdm(kpcs[root_node], desc='k loop', file=stdout)
k_set_time = timer()
# this will contain all the data needed to calculate the energy variations upon rotation
hamiltonians = []
# iterate over the reference directions (quantization axes)
for i, orient in enumerate(ref_xcf_orientations):
# obtain rotated exchange field
R = RotMa2b(scf_xcf_orientation, orient["o"])
rot_XCF = np.einsum("ij,jklm->iklm", R, XCF)
rot_H_XCF = sum(
[np.kron(rot_XCF[i], tau) for i, tau in enumerate([tau_x, tau_y, tau_z])]
)
rot_H_XCF_uc = rot_H_XCF[uc_in_sc_idx]
# obtain total Hamiltonian with the rotated exchange field
rot_H = hTRS + rot_H_XCF # equation 76
hamiltonians.append(
dict(orient=orient["o"], H=rot_H, rotations=[])
) # store orientation and rotated Hamiltonian
for u in orient[
"vw"
]: # these are the infinitezimal rotations (for now) perpendicular to the quantization axis
Tu = np.kron(np.eye(NO, dtype=int), tau_u(u)) # section 2.H
Vu1 = 1j / 2 * commutator(rot_H_XCF_uc, Tu) # equation 100
Vu2 = 1 / 8 * commutator(commutator(Tu, rot_H_XCF_uc), Tu) # equation 100
for mag_ent in magnetic_entities:
mag_ent["Vu1"][i].append(
Vu1[:, mag_ent["spin_box_indeces"]][mag_ent["spin_box_indeces"], :]
) # fill up the perturbed potentials (for now) based on the on-site projections
mag_ent["Vu2"][i].append(
Vu2[:, mag_ent["spin_box_indeces"]][mag_ent["spin_box_indeces"], :]
)
for pair in pairs:
ai = magnetic_entities[pair["ai"]][
"spin_box_indeces"
] # get the pair orbital sizes from the magnetic entities
aj = magnetic_entities[pair["aj"]]["spin_box_indeces"]
pair["Vij"][i].append(
Vu1[:, ai][aj, :]
) # fill up the perturbed potentials (for now) based on the on-site projections
pair["Vji"][i].append(Vu1[:, aj][ai, :])
reference_rotations_time = timer()
if rank == root_node:
print("Number of magnetic entities being calculated: ", len(magnetic_entities))
print(
"We have to calculate the Greens function for three reference direction and we are going to calculate 15 energy integrals per site."
)
print(f"The shape of the Hamiltonian and the Greens function is {NO}x{NO}.")
comm.Barrier()
# ----------------------------------------------------------------------
# make energy contour
# we are working in eV now !
# and sisil shifts E_F to 0 !
cont = make_contour(emin=ebot, enum=eset, p=esetp)
eran = cont.ze
# ----------------------------------------------------------------------
# sampling the integrand on the contour and the BZ
for k in kpcs[rank]:
wk = wkset[rank] # weight of k point in BZ integral
for i, hamiltonian_orientation in enumerate(
hamiltonians
): # iterate over reference directions
# calculate Greens function
H = hamiltonian_orientation["H"]
HK, SK = hsk(H, ss, dh.sc_off, k)
Gk = inv(SK * eran.reshape(eset, 1, 1) - HK)
# store the Greens function slice of the magnetic entities (for now) based on the on-site projections
for mag_ent in magnetic_entities:
mag_ent["Gii_tmp"][i] += (
Gk[:, mag_ent["spin_box_indeces"]][..., mag_ent["spin_box_indeces"]]
* wk
)
for pair in pairs:
# add phase shift based on the cell difference
phase = np.exp(1j * 2 * np.pi * k @ pair["Ruc"].T)
# get the pair orbital sizes from the magnetic entities
ai = magnetic_entities[pair["ai"]]["spin_box_indeces"]
aj = magnetic_entities[pair["aj"]]["spin_box_indeces"]
# store the Greens function slice of the magnetic entities (for now) based on the on-site projections
pair["Gij_tmp"][i] += Gk[:, ai][..., aj] * phase * wk
pair["Gji_tmp"][i] += Gk[:, aj][..., ai] * phase * wk
# summ reduce partial results of mpi nodes
for i in range(len(hamiltonians)):
for mag_ent in magnetic_entities:
comm.Reduce(mag_ent["Gii_tmp"][i], mag_ent["Gii"][i], root=root_node)
for pair in pairs:
comm.Reduce(pair["Gij_tmp"][i], pair["Gij"][i], root=root_node)
comm.Reduce(pair["Gji_tmp"][i], pair["Gji"][i], root=root_node)
green_function_inversion_time = timer()
if rank == root_node:
# iterate over the magnetic entities
for tracker, mag_ent in enumerate(magnetic_entities):
# iterate over the quantization axes
for i, Gii in enumerate(mag_ent["Gii"]):
storage = []
# iterate over the first and second order local perturbations
for Vu1, Vu2 in zip(mag_ent["Vu1"][i], mag_ent["Vu2"][i]):
# The Szunyogh-Lichtenstein formula
traced = np.trace((Vu2 @ Gii + 0.5 * Gii @ Vu1 @ Gii), axis1=1, axis2=2)
# evaluation of the contour integral
storage.append(np.trapz(-1 / np.pi * np.imag(traced * cont.we)))
# fill up the magnetic entities dictionary with the energies
mag_ent["energies"].append(storage)
# iterate over the pairs
for tracker, pair in enumerate(pairs):
# iterate over the quantization axes
for i, (Gij, Gji) in enumerate(zip(pair["Gij"], pair["Gji"])):
site_i = magnetic_entities[pair["ai"]]
site_j = magnetic_entities[pair["aj"]]
storage = []
# iterate over the first order local perturbations in all possible orientations for the two sites
for Vui in site_i["Vu1"][i]:
for Vuj in site_j["Vu1"][i]:
# The Szunyogh-Lichtenstein formula
traced = np.trace((Vui @ Gij @ Vuj @ Gji), axis1=1, axis2=2)
# evaluation of the contour integral
storage.append(np.trapz(-1 / np.pi * np.imag(traced * cont.we)))
# fill up the pairs dictionary with the energies
pairs[tracker]["energies"].append(storage)
end_time = timer()
print("############################### GROGU OUTPUT ###################################")
print("================================================================================")
print("Input file: ")
print(simulation_parameters["path"])
print("Number of nodes in the parallel cluster: ", simulation_parameters["parallel_size"])
print("================================================================================")
try:
print("Cell [Ang]: ")
print(simulation_parameters["geom"].cell)
except:
print("Geometry could not be read.")
print("================================================================================")
print("DFT axis: ")
print(simulation_parameters["scf_xcf_orientation"])
print("Quantization axis and perpendicular rotation directions:")
for ref in ref_xcf_orientations:
print(ref["o"], " --» ", ref["vw"])
print("================================================================================")
print("number of k points: ", simulation_parameters["kset"])
print("k point directions: ", simulation_parameters["kdirs"])
print("================================================================================")
print("Parameters for the contour integral:")
print("Ebot: ", simulation_parameters["ebot"])
print("Eset: ", simulation_parameters["eset"])
print("Esetp: ", simulation_parameters["esetp"])
print("================================================================================")
print("Atomic informations: ")
print("")
print("")
print("Not yet specified.")
print("")
print("")
print("================================================================================")
print("Exchange [meV]")
print("--------------------------------------------------------------------------------")
print("Atom1 Atom2 [i j k] d [Ang]")
print("--------------------------------------------------------------------------------")
for pair in pairs:
J_iso, J_S, D = calculate_exchange_tensor(pair)
J_iso = J_iso * sisl.unit_convert("eV", "meV")
J_S = J_S * sisl.unit_convert("eV", "meV")
D = D * sisl.unit_convert("eV", "meV")
print(pair["ai"], pair["aj"], pair["Ruc"], "distance")
print("Isotropic: ", J_iso)
print("DMI: ", D)
print("Symmetric-anisotropy: ", J_S)
print("")
print("================================================================================")
print("Runtime information: ")
print("Total runtime: ", end_time - start_time)
print("--------------------------------------------------------------------------------")
print("Initial setup: ", setup_time - start_time)
print(f"Hamiltonian conversion and XC field extraction: {H_and_XCF_time - setup_time:.3f} s")
print(f"Pair and site datastructure creatrions: {site_and_pair_dictionaries_time - H_and_XCF_time:.3f} s")
print(f"k set cration and distribution: {k_set_time - site_and_pair_dictionaries_time:.3f} s")
print(f"Rotating XC potential: {reference_rotations_time - k_set_time:.3f} s")
print(f"Greens function inversion: {green_function_inversion_time - reference_rotations_time:.3f} s")
print(f"Calculate energies and magnetic components: {end_time - green_function_inversion_time:.3f} s")
Loading…
Cancel
Save