You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
386 lines
14 KiB
386 lines
14 KiB
# Copyright (c) [2024] []
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
# of this software and associated documentation files (the "Software"), to deal
|
|
# in the Software without restriction, including without limitation the rights
|
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
# copies of the Software, and to permit persons to whom the Software is
|
|
# furnished to do so, subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be included in all
|
|
# copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
# SOFTWARE.
|
|
|
|
"""Docstring in core.
|
|
"""
|
|
|
|
import numpy as np
|
|
from numpy.linalg import inv
|
|
from sisl.physics import Hamiltonian
|
|
|
|
from grogupy.magnetism import blow_up_orbindx, parse_magnetic_entity
|
|
from grogupy.utilities import commutator
|
|
|
|
|
|
def onsite_projection(matrix: np.array, idx1: np.array, idx2: np.array) -> np.array:
|
|
"""It produces the slices of a matrix for the on site projection.
|
|
|
|
The slicing is along the last two axes as these contains the orbital indexing.
|
|
|
|
Args:
|
|
matrix : (..., :, :) np.array_like
|
|
Some matrix
|
|
idx : np.array_like
|
|
The indexes of the orbitals
|
|
|
|
Returns:
|
|
np.array_like
|
|
Reduced matrix based on the projection
|
|
"""
|
|
|
|
return matrix[..., idx1, :][..., idx2]
|
|
|
|
|
|
def calc_Vu(H: np.array, Tu: np.array) -> np.array:
|
|
"""Calculates the local perturbation in case of a spin rotation.
|
|
|
|
Args:
|
|
H : (NO, NO) np.array_like
|
|
Hamiltonian
|
|
Tu : (NO, NO) array_like
|
|
Rotation around u
|
|
|
|
Returns:
|
|
Vu1 : (NO, NO) np.array_like
|
|
First order perturbed matrix
|
|
Vu2 : (NO, NO) np.array_like
|
|
Second order perturbed matrix
|
|
"""
|
|
|
|
Vu1 = 1j / 2 * commutator(H, Tu) # equation 100
|
|
Vu2 = 1 / 8 * commutator(commutator(Tu, H), Tu) # equation 100
|
|
|
|
return Vu1, Vu2
|
|
|
|
|
|
def build_hh_ss(dh: Hamiltonian) -> tuple[np.array, np.array]:
|
|
"""It builds the Hamiltonian and Overlap matrix from the sisl.dh class.
|
|
|
|
It restructures the data in the SPIN BOX representation, where NS is
|
|
the number of supercells and NO is the number of orbitals.
|
|
|
|
Args:
|
|
dh : sisl.physics.Hamiltonian
|
|
Hamiltonian read in by sisl
|
|
|
|
Returns:
|
|
hh : (NS, NO, NO) np.array_like
|
|
Hamiltonian in SPIN BOX representation
|
|
ss : (NS, NO, NO) np.array_like
|
|
Overlap matrix in SPIN BOX representation
|
|
"""
|
|
|
|
NO = dh.no # shorthand for number of orbitals in the unit cell
|
|
|
|
# preprocessing Hamiltonian and overlap matrix elements
|
|
h11 = dh.tocsr(dh.M11r)
|
|
h11 += dh.tocsr(dh.M11i) * 1.0j
|
|
h11 = h11.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
|
|
|
|
h22 = dh.tocsr(dh.M22r)
|
|
h22 += dh.tocsr(dh.M22i) * 1.0j
|
|
h22 = h22.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
|
|
|
|
h12 = dh.tocsr(dh.M12r)
|
|
h12 += dh.tocsr(dh.M12i) * 1.0j
|
|
h12 = h12.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
|
|
|
|
h21 = dh.tocsr(dh.M21r)
|
|
h21 += dh.tocsr(dh.M21i) * 1.0j
|
|
h21 = h21.toarray().reshape(NO, dh.n_s, NO).transpose(0, 2, 1).astype("complex128")
|
|
|
|
sov = (
|
|
dh.tocsr(dh.S_idx)
|
|
.toarray()
|
|
.reshape(NO, dh.n_s, NO)
|
|
.transpose(0, 2, 1)
|
|
.astype("complex128")
|
|
)
|
|
|
|
# Reorganization of Hamiltonian and overlap matrix elements to SPIN BOX representation
|
|
U = np.vstack(
|
|
[np.kron(np.eye(NO, dtype=int), [1, 0]), np.kron(np.eye(NO, dtype=int), [0, 1])]
|
|
)
|
|
# This is the permutation that transforms ud1ud2 to u12d12
|
|
# That is this transforms FROM SPIN BOX to ORBITAL BOX => U
|
|
# the inverse transformation is U.T u12d12 to ud1ud2
|
|
# That is FROM ORBITAL BOX to SPIN BOX => U.T
|
|
|
|
# From now on everything is in SPIN BOX!!
|
|
hh, ss = np.array(
|
|
[
|
|
U.T
|
|
@ np.block([[h11[:, :, i], h12[:, :, i]], [h21[:, :, i], h22[:, :, i]]])
|
|
@ U
|
|
for i in range(dh.lattice.nsc.prod())
|
|
]
|
|
), np.array(
|
|
[
|
|
U.T
|
|
@ np.block(
|
|
[[sov[:, :, i], sov[:, :, i] * 0], [sov[:, :, i] * 0, sov[:, :, i]]]
|
|
)
|
|
@ U
|
|
for i in range(dh.lattice.nsc.prod())
|
|
]
|
|
)
|
|
|
|
return hh, ss
|
|
|
|
|
|
def setup_pairs_and_magnetic_entities(
|
|
magnetic_entities: list, pairs: list, dh, simulation_parameters: dict
|
|
) -> tuple[list, list]:
|
|
"""It creates the complete structure of the dictionaries and fills some basic data.
|
|
|
|
It creates orbital indexes, spin box indexes, coordinates and tags for magnetic entities.
|
|
Furthermore it creates the structures for the energies, the perturbed potentials and
|
|
the Greens function calculation. It dose the same for the pairs.
|
|
|
|
Args:
|
|
pairs : dict
|
|
Contains the initial pair information
|
|
magnetic_entities : dict
|
|
Contains the initial magnetic entity information
|
|
dh : sisl.physics.Hamiltonian
|
|
Hamiltonian read in by sisl
|
|
simulation_parameters : dict
|
|
A set of parameters from the simulation
|
|
|
|
Returns:
|
|
pairs : dict
|
|
Contains the initial information and the complete structure
|
|
magnetic_entities : dict
|
|
Contains the initial information and the complete structure
|
|
"""
|
|
|
|
# for every site we have to store 3 Greens function (and the associated _tmp-s) in the 3 reference directions
|
|
for mag_ent in magnetic_entities:
|
|
parsed = parse_magnetic_entity(dh, **mag_ent) # parse orbital indexes
|
|
mag_ent["orbital_indices"] = parsed
|
|
mag_ent["spin_box_indices"] = blow_up_orbindx(
|
|
parsed
|
|
) # calculate spin box indexes
|
|
# if orbital is not set use all
|
|
if "l" not in mag_ent.keys():
|
|
mag_ent["l"] = "all"
|
|
|
|
# tag creation for one atom
|
|
if isinstance(mag_ent["atom"], int):
|
|
mag_ent["tags"] = [
|
|
f"[{mag_ent['atom']}]{dh.atoms[mag_ent['atom']].tag}({mag_ent['l']})"
|
|
]
|
|
mag_ent["xyz"] = [dh.xyz[mag_ent["atom"]]]
|
|
# tag creation for more atoms
|
|
if isinstance(mag_ent["atom"], list):
|
|
mag_ent["tags"] = []
|
|
mag_ent["xyz"] = []
|
|
# iterate over atoms
|
|
for atom_idx in mag_ent["atom"]:
|
|
mag_ent["tags"].append(
|
|
f"[{atom_idx}]{dh.atoms[atom_idx].tag}({mag_ent['l']})"
|
|
)
|
|
mag_ent["xyz"].append(dh.xyz[atom_idx])
|
|
|
|
# calculate size for Greens function generation
|
|
spin_box_shape = len(mag_ent["spin_box_indices"])
|
|
|
|
# we will store the second order energy derivations here
|
|
mag_ent["energies"] = []
|
|
|
|
# These will be the perturbed potentials from eq. 100
|
|
mag_ent["Vu1"] = [] # so they are independent in memory
|
|
mag_ent["Vu2"] = []
|
|
|
|
mag_ent["Gii"] = [] # Greens function
|
|
mag_ent["Gii_tmp"] = [] # Greens function for parallelization
|
|
for _ in simulation_parameters["ref_xcf_orientations"]:
|
|
# Rotations for every quantization axis
|
|
mag_ent["Vu1"].append([])
|
|
mag_ent["Vu2"].append([])
|
|
# Greens functions for every quantization axis
|
|
mag_ent["Gii"].append(
|
|
np.zeros(
|
|
(simulation_parameters["eset"], spin_box_shape, spin_box_shape),
|
|
dtype="complex128",
|
|
)
|
|
)
|
|
mag_ent["Gii_tmp"].append(
|
|
np.zeros(
|
|
(simulation_parameters["eset"], spin_box_shape, spin_box_shape),
|
|
dtype="complex128",
|
|
)
|
|
)
|
|
|
|
# for every site we have to store 2x3 Greens function (and the associated _tmp-s)
|
|
# in the 3 reference directions, because G_ij and G_ji are both needed
|
|
for pair in pairs:
|
|
# calculate distance
|
|
xyz_ai = magnetic_entities[pair["ai"]]["xyz"]
|
|
xyz_aj = magnetic_entities[pair["aj"]]["xyz"]
|
|
xyz_aj = xyz_aj + pair["Ruc"] @ simulation_parameters["cell"]
|
|
pair["dist"] = np.linalg.norm(xyz_ai - xyz_aj)
|
|
|
|
# calculate size for Greens function generation
|
|
spin_box_shape_i = len(magnetic_entities[pair["ai"]]["spin_box_indices"])
|
|
spin_box_shape_j = len(magnetic_entities[pair["aj"]]["spin_box_indices"])
|
|
# tag generation
|
|
pair["tags"] = []
|
|
for mag_ent in [magnetic_entities[pair["ai"]], magnetic_entities[pair["aj"]]]:
|
|
tag = ""
|
|
# get atoms of magnetic entity
|
|
atoms_idx = mag_ent["atom"]
|
|
orbitals = mag_ent["l"]
|
|
|
|
# if magnetic entity contains one atoms
|
|
if isinstance(atoms_idx, int):
|
|
tag += f"[{atoms_idx}]{dh.atoms[atoms_idx].tag}({orbitals})"
|
|
|
|
# if magnetic entity contains more than one atoms
|
|
if isinstance(atoms_idx, list):
|
|
# iterate over atoms
|
|
atom_group = "{"
|
|
for atom_idx in atoms_idx:
|
|
atom_group += f"[{atom_idx}]{dh.atoms[atom_idx].tag}({orbitals})--"
|
|
# end {} of the atoms in the magnetic entity
|
|
tag += atom_group[:-2] + "}"
|
|
pair["tags"].append(tag)
|
|
pair["energies"] = [] # we will store the second order energy derivations here
|
|
|
|
pair["Gij"] = [] # Greens function
|
|
pair["Gji"] = []
|
|
pair["Gij_tmp"] = [] # Greens function for parallelization
|
|
pair["Gji_tmp"] = []
|
|
for _ in simulation_parameters["ref_xcf_orientations"]:
|
|
# Greens functions for every quantization axis
|
|
pair["Gij"].append(
|
|
np.zeros(
|
|
(simulation_parameters["eset"], spin_box_shape_i, spin_box_shape_j),
|
|
dtype="complex128",
|
|
)
|
|
)
|
|
pair["Gij_tmp"].append(
|
|
np.zeros(
|
|
(simulation_parameters["eset"], spin_box_shape_i, spin_box_shape_j),
|
|
dtype="complex128",
|
|
)
|
|
)
|
|
pair["Gji"].append(
|
|
np.zeros(
|
|
(simulation_parameters["eset"], spin_box_shape_j, spin_box_shape_i),
|
|
dtype="complex128",
|
|
)
|
|
)
|
|
pair["Gji_tmp"].append(
|
|
np.zeros(
|
|
(simulation_parameters["eset"], spin_box_shape_j, spin_box_shape_i),
|
|
dtype="complex128",
|
|
)
|
|
)
|
|
|
|
return pairs, magnetic_entities
|
|
|
|
|
|
def parallel_Gk(HK: np.array, SK: np.array, eran: np.array, eset: int) -> np.array:
|
|
"""Calculates the Greens function by inversion.
|
|
|
|
It calculates the Greens function on all the energy levels at the same time.
|
|
|
|
Args:
|
|
HK : (NO, NO), np.array_like
|
|
Hamiltonian at a given k point
|
|
SK : (NO, NO), np.array_like
|
|
Overlap Matrix at a given k point
|
|
eran : (eset) np.array_like
|
|
Energy sample along the contour
|
|
eset : int
|
|
Number of energy samples along the contour
|
|
|
|
Returns:
|
|
Gk : (eset, NO, NO), np.array_like
|
|
Green's function at a given k point
|
|
"""
|
|
|
|
# Calculates the Greens function on all the energy levels
|
|
return inv(SK * eran.reshape(eset, 1, 1) - HK)
|
|
|
|
|
|
def sequential_GK(HK: np.array, SK: np.array, eran: np.array, eset: int) -> np.array:
|
|
"""Calculates the Greens function by inversion.
|
|
|
|
It calculates sequentially over the energy levels.
|
|
|
|
Args:
|
|
HK : (NO, NO), np.array_like
|
|
Hamiltonian at a given k point
|
|
SK : (NO, NO), np.array_like
|
|
Overlap Matrix at a given k point
|
|
eran : (eset) np.array_like
|
|
Energy sample along the contour
|
|
eset : int
|
|
Number of energy samples along the contour
|
|
|
|
Returns:
|
|
Gk : (eset, NO, NO), np.array_like
|
|
Green's function at a given k point
|
|
"""
|
|
|
|
# creates an empty holder
|
|
Gk = np.zeros(shape=(eset, HK.shape[0], HK.shape[1]), dtype="complex128")
|
|
# fills the holder sequentially by the Greens function on a given energy
|
|
for j in range(eset):
|
|
Gk[j] = inv(SK * eran[j] - HK)
|
|
|
|
return Gk
|
|
|
|
|
|
def remove_clutter_for_save(pairs: list, magnetic_entities: list) -> tuple[list, list]:
|
|
"""Removes unimportant data from the dictionaries.
|
|
|
|
It is used before saving to throw away data that
|
|
is not needed for post processing.
|
|
|
|
Args:
|
|
pairs : dict
|
|
Contains all the pair information
|
|
magnetic_entities : dict
|
|
Contains all the magnetic entity information
|
|
|
|
Returns:
|
|
pairs : dict
|
|
Contains all the reduced pair information
|
|
magnetic_entities : dict
|
|
Contains all the reduced magnetic entity information
|
|
"""
|
|
|
|
# remove clutter from magnetic entities and pair information
|
|
for pair in pairs:
|
|
del pair["Gij"]
|
|
del pair["Gij_tmp"]
|
|
del pair["Gji"]
|
|
del pair["Gji_tmp"]
|
|
for mag_ent in magnetic_entities:
|
|
del mag_ent["Gii"]
|
|
del mag_ent["Gii_tmp"]
|
|
del mag_ent["Vu1"]
|
|
del mag_ent["Vu2"]
|
|
|
|
return pairs, magnetic_entities
|