You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
grogu/test.ipynb

1045 lines
50 KiB

3 months ago
{
"cells": [
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{'architecture': 'armv8',\n",
" 'filepath': '/Users/danielpozsar/Documents/oktatás/elte/phd/grogu_project/.venv/lib/python3.9/site-packages/numpy/.dylibs/libopenblas64_.0.dylib',\n",
" 'internal_api': 'openblas',\n",
" 'num_threads': 1,\n",
" 'prefix': 'libopenblas',\n",
" 'threading_layer': 'pthreads',\n",
" 'user_api': 'blas',\n",
" 'version': '0.3.21'},\n",
" {'architecture': 'neoversen1',\n",
" 'filepath': '/Users/danielpozsar/Documents/oktatás/elte/phd/grogu_project/.venv/lib/python3.9/site-packages/scipy/.dylibs/libopenblas.0.dylib',\n",
" 'internal_api': 'openblas',\n",
" 'num_threads': 1,\n",
" 'prefix': 'libopenblas',\n",
" 'threading_layer': 'pthreads',\n",
" 'user_api': 'blas',\n",
" 'version': '0.3.27'}]\n"
]
}
],
"source": [
"from threadpoolctl import threadpool_info\n",
"from pprint import pprint\n",
"import numpy\n",
"\n",
"pprint(threadpool_info())"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"os.environ[\"OMP_NUM_THREADS\"] = \"1\" # export OMP_NUM_THREADS=1\n",
"os.environ[\"OPENBLAS_NUM_THREADS\"] = \"1\" # export OPENBLAS_NUM_THREADS=1\n",
"os.environ[\"MKL_NUM_THREADS\"] = \"1\" # export MKL_NUM_THREADS=1\n",
"os.environ[\"VECLIB_MAXIMUM_THREADS\"] = \"1\" # export VECLIB_MAXIMUM_THREADS=1\n",
"os.environ[\"NUMEXPR_NUM_THREADS\"] = \"1\" # export NUMEXPR_NUM_THREADS=1"
]
},
{
"cell_type": "code",
"execution_count": 3,
3 months ago
"metadata": {},
"outputs": [
{
2 months ago
"name": "stdout",
"output_type": "stream",
"text": [
2 months ago
"0.14.3\n",
"1.24.4\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[Daniels-Air:88431] shmem: mmap: an error occurred while determining whether or not /var/folders/yh/dx7xl94n3g52ts3td8qcxjcc0000gn/T//ompi.Daniels-Air.501/jf.0/455868416/sm_segment.Daniels-Air.501.1b2c0000.0 could be created.\n"
]
}
],
3 months ago
"source": [
"from sys import getsizeof\n",
"from timeit import default_timer as timer\n",
"\n",
3 months ago
"import sisl\n",
"import sisl.viz\n",
"from src.grogu_magn import *\n",
3 months ago
"from mpi4py import MPI\n",
"import warnings\n",
"\n",
"# runtime information\n",
"times = dict()\n",
"times[\"start_time\"] = timer()\n",
"########################\n",
3 months ago
"# it works if data is in downloads folder\n",
"########################\n",
"sisl.__version__\n",
"\n",
"try:\n",
" print(sisl.__version__)\n",
"except:\n",
" print(\"sisl version unknown.\")\n",
"\n",
"try:\n",
" print(np.__version__)\n",
"except:\n",
" print(\"numpy version unknown.\")"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'o': array([1., 0., 0.]),\n",
" 'vw': array([[0., 1., 0.],\n",
" [0., 0., 1.]])},\n",
" {'o': array([0., 1., 0.]),\n",
" 'vw': array([[1., 0., 0.],\n",
" [0., 0., 1.]])},\n",
" {'o': array([0., 0., 1.]),\n",
" 'vw': array([[1., 0., 0.],\n",
" [0., 1., 0.]])}]"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fdf = sisl.io.fdfSileSiesta(\"input.fdf\")\n",
"rotations = fdf.get(\"XCF_Rotation\")\n",
"my_rot = []\n",
"for rot in rotations:\n",
" dat = np.array(rot.split(), dtype=float)\n",
" o = dat[:3]\n",
" vw = dat[3:]\n",
" vw = vw.reshape(2, 3)\n",
" my_rot.append(dict(o=o, vw=vw))\n",
"\n",
"my_rot"
]
},
{
"cell_type": "code",
"execution_count": 4,
3 months ago
"metadata": {},
"outputs": [],
3 months ago
"source": [
"################################################################################\n",
"#################################### INPUT #####################################\n",
"################################################################################\n",
"path = (\n",
" \"/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf\"\n",
")\n",
"outfile = \"./Fe3GeTe2_notebook\"\n",
"\n",
3 months ago
"# this information needs to be given at the input!!\n",
"scf_xcf_orientation = np.array([0, 0, 1]) # z\n",
3 months ago
"# list of reference directions for around which we calculate the derivatives\n",
"# o is the quantization axis, v and w are two axes perpendicular to it\n",
"# at this moment the user has to supply o,v,w on the input.\n",
3 months ago
"# we can have some default for this\n",
"ref_xcf_orientations = [\n",
" dict(o=np.array([1, 0, 0]), vw=[np.array([0, 1, 0]), np.array([0, 0, 1])]),\n",
" dict(o=np.array([0, 1, 0]), vw=[np.array([1, 0, 0]), np.array([0, 0, 1])]),\n",
" dict(o=np.array([0, 0, 1]), vw=[np.array([1, 0, 0]), np.array([0, 1, 0])]),\n",
"]\n",
"magnetic_entities = [\n",
" dict(atom=3, l=2),\n",
" dict(atom=4, l=2),\n",
" dict(atom=5, l=2),\n",
"]\n",
"pairs = [\n",
" dict(ai=0, aj=1, Ruc=np.array([0, 0, 0])),\n",
" dict(ai=0, aj=2, Ruc=np.array([0, 0, 0])),\n",
" dict(ai=1, aj=2, Ruc=np.array([0, 0, 0])),\n",
" dict(ai=0, aj=2, Ruc=np.array([-1, -1, 0])),\n",
" dict(ai=1, aj=2, Ruc=np.array([-1, -1, 0])),\n",
" dict(ai=0, aj=2, Ruc=np.array([-1, 0, 0])),\n",
" dict(ai=1, aj=2, Ruc=np.array([-1, 0, 0])),\n",
" dict(ai=1, aj=2, Ruc=np.array([-2, 0, 0])),\n",
" dict(ai=1, aj=2, Ruc=np.array([-3, 0, 0])),\n",
"]\n",
"\n",
3 months ago
"# Brilloun zone sampling and Green function contour integral\n",
"kset = 3\n",
"kdirs = \"xy\"\n",
"ebot = -13\n",
"eset = 300\n",
"esetp = 1000\n",
"################################################################################\n",
"#################################### INPUT #####################################\n",
"################################################################################"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"================================================================================================================================================================\n",
"Input file: \n",
"/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf\n",
"Output file: \n",
"./Fe3GeTe2_notebook.pickle\n",
"Number of nodes in the parallel cluster: 1\n",
"================================================================================================================================================================\n",
"Cell [Ang]: \n",
"[[ 3.79100000e+00 0.00000000e+00 0.00000000e+00]\n",
" [-1.89550000e+00 3.28310231e+00 0.00000000e+00]\n",
" [ 1.25954923e-15 2.18160327e-15 2.05700000e+01]]\n",
"================================================================================================================================================================\n",
"DFT axis: \n",
"[0 0 1]\n",
"Quantization axis and perpendicular rotation directions:\n",
"[1 0 0] --» [array([0, 1, 0]), array([0, 0, 1])]\n",
"[0 1 0] --» [array([1, 0, 0]), array([0, 0, 1])]\n",
"[0 0 1] --» [array([1, 0, 0]), array([0, 1, 0])]\n",
"================================================================================================================================================================\n",
"Parameters for the contour integral:\n",
"Number of k points: 3\n",
"k point directions: xy\n",
"Ebot: -13\n",
"Eset: 300\n",
"Esetp: 1000\n",
"================================================================================================================================================================\n"
]
},
{
"ename": "KeyError",
"evalue": "'calculate_charge'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[5], line 43\u001b[0m\n\u001b[1;32m 40\u001b[0m uc_in_sc_idx \u001b[38;5;241m=\u001b[39m dh\u001b[38;5;241m.\u001b[39mlattice\u001b[38;5;241m.\u001b[39msc_index([\u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m0\u001b[39m])\n\u001b[1;32m 42\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m rank \u001b[38;5;241m==\u001b[39m root_node:\n\u001b[0;32m---> 43\u001b[0m \u001b[43mprint_parameters\u001b[49m\u001b[43m(\u001b[49m\u001b[43msimulation_parameters\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 44\u001b[0m times[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msetup_time\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m timer()\n\u001b[1;32m 45\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSetup done. Elapsed time: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mtimes[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msetup_time\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m s\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
"File \u001b[0;32m~/Documents/oktatás/elte/phd/grogu_project/src/grogu_magn/io.py:116\u001b[0m, in \u001b[0;36mprint_parameters\u001b[0;34m(simulation_parameters)\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mEsetp: \u001b[39m\u001b[38;5;124m\"\u001b[39m, simulation_parameters[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mesetp\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m 113\u001b[0m \u001b[38;5;28mprint\u001b[39m(\n\u001b[1;32m 114\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m================================================================================================================================================================\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 115\u001b[0m )\n\u001b[0;32m--> 116\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[43msimulation_parameters\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcalculate_charge\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m:\n\u001b[1;32m 117\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe calculated charge of the Hamiltonian in the quantization axes: \u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 118\u001b[0m \u001b[38;5;28mprint\u001b[39m(simulation_parameters[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcharges\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n",
"\u001b[0;31mKeyError\u001b[0m: 'calculate_charge'"
]
}
],
"source": [
3 months ago
"# MPI parameters\n",
"comm = MPI.COMM_WORLD\n",
"size = comm.Get_size()\n",
"rank = comm.Get_rank()\n",
"root_node = 0\n",
"\n",
"# rename outfile\n",
"if not outfile.endswith(\".pickle\"):\n",
" outfile += \".pickle\"\n",
"\n",
"simulation_parameters = dict(\n",
" infile=path,\n",
" outfile=outfile,\n",
" scf_xcf_orientation=scf_xcf_orientation,\n",
" ref_xcf_orientations=ref_xcf_orientations,\n",
" kset=kset,\n",
" kdirs=kdirs,\n",
" ebot=ebot,\n",
" eset=eset,\n",
" esetp=esetp,\n",
" parallel_size=size,\n",
")\n",
"\n",
"# if ebot is not given put it 0.1 eV under the smallest energy\n",
"if simulation_parameters[\"ebot\"] is None:\n",
" try:\n",
" eigfile = simulation_parameters[\"infile\"][:-3] + \"EIG\"\n",
" simulation_parameters[\"ebot\"] = read_siesta_emin(eigfile) - 0.1\n",
" except:\n",
" print(\"Could not determine ebot.\")\n",
" print(\"Parameter was not given and .EIG file was not found.\")\n",
"# digestion of the input\n",
"# read sile\n",
"fdf = sisl.get_sile(simulation_parameters[\"infile\"])\n",
"# read in hamiltonian\n",
"dh = fdf.read_hamiltonian()\n",
"simulation_parameters[\"cell\"] = fdf.read_geometry().cell\n",
"\n",
"# unit cell index\n",
"uc_in_sc_idx = dh.lattice.sc_index([0, 0, 0])\n",
"\n",
"if rank == root_node:\n",
" print_parameters(simulation_parameters)\n",
" times[\"setup_time\"] = timer()\n",
" print(f\"Setup done. Elapsed time: {times['setup_time']} s\")\n",
" print(\n",
" \"================================================================================================================================================================\"\n",
" )"
3 months ago
]
},
{
"cell_type": "code",
"execution_count": null,
3 months ago
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
2 months ago
"Hamiltonian and exchange field rotated. Elapsed time: 2435.900105791 s\n",
"================================================================================================================================================================\n"
]
}
],
3 months ago
"source": [
"hh, ss, NO = build_hh_ss(dh)\n",
"\n",
"\n",
"# symmetrizing Hamiltonian and overlap matrix to make them hermitian\n",
"for i in range(dh.lattice.sc_off.shape[0]):\n",
" j = dh.lattice.sc_index(-dh.lattice.sc_off[i])\n",
" h1, h1d = hh[i], hh[j]\n",
" hh[i], hh[j] = (h1 + h1d.T.conj()) / 2, (h1d + h1.T.conj()) / 2\n",
" s1, s1d = ss[i], ss[j]\n",
" ss[i], ss[j] = (s1 + s1d.T.conj()) / 2, (s1d + s1.T.conj()) / 2\n",
"\n",
"\n",
3 months ago
"# identifying TRS and TRB parts of the Hamiltonian\n",
"TAUY = np.kron(np.eye(NO), tau_y)\n",
"hTR = np.array([TAUY @ hh[i].conj() @ TAUY for i in range(dh.lattice.nsc.prod())])\n",
"hTRS = (hh + hTR) / 2\n",
"hTRB = (hh - hTR) / 2\n",
3 months ago
"\n",
"# extracting the exchange field\n",
"traced = [spin_tracer(hTRB[i]) for i in range(dh.lattice.nsc.prod())] # equation 77\n",
"XCF = np.array(\n",
" [\n",
" np.array([f[\"x\"] / 2 for f in traced]),\n",
" np.array([f[\"y\"] / 2 for f in traced]),\n",
" np.array([f[\"z\"] / 2 for f in traced]),\n",
" ]\n",
") # equation 77\n",
3 months ago
"\n",
"\n",
3 months ago
"# Check if exchange field has scalar part\n",
"max_xcfs = abs(np.array(np.array([f[\"c\"] / 2 for f in traced]))).max()\n",
"if max_xcfs > 1e-12:\n",
" warnings.warn(\n",
" f\"Exchange field has non negligible scalar part. Largest value is {max_xcfs}\"\n",
" )\n",
"\n",
"if rank == root_node:\n",
" times[\"H_and_XCF_time\"] = timer()\n",
" print(\n",
" f\"Hamiltonian and exchange field rotated. Elapsed time: {times['H_and_XCF_time']} s\"\n",
" )\n",
" print(\n",
" \"================================================================================================================================================================\"\n",
" )"
3 months ago
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
2 months ago
"Site and pair dictionaries created. Elapsed time: 2438.737295 s\n",
"================================================================================================================================================================\n"
]
}
],
3 months ago
"source": [
"pairs, magnetic_entities = setup_pairs_and_magnetic_entities(\n",
" magnetic_entities, pairs, dh, simulation_parameters\n",
")\n",
"\n",
"if rank == root_node:\n",
" times[\"site_and_pair_dictionaries_time\"] = timer()\n",
" print(\n",
" f\"Site and pair dictionaries created. Elapsed time: {times['site_and_pair_dictionaries_time']} s\"\n",
" )\n",
" print(\n",
" \"================================================================================================================================================================\"\n",
" )"
3 months ago
]
},
{
"cell_type": "code",
"execution_count": null,
3 months ago
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"k loop: 0%| | 0/9 [00:00<?, ?it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
2 months ago
"k set created. Elapsed time: 2441.389173 s\n",
"================================================================================================================================================================\n"
]
}
],
3 months ago
"source": [
"kset = make_kset(\n",
" dirs=simulation_parameters[\"kdirs\"], NUMK=simulation_parameters[\"kset\"]\n",
") # generate k space sampling\n",
"wkset = np.ones(len(kset)) / len(kset) # generate weights for k points\n",
"kpcs = np.array_split(kset, size) # split the k points based on MPI size\n",
"\n",
"if tqdm_imported:\n",
" kpcs[root_node] = tqdm(kpcs[root_node], desc=\"k loop\")\n",
"\n",
"if rank == root_node:\n",
" times[\"k_set_time\"] = timer()\n",
" print(f\"k set created. Elapsed time: {times['k_set_time']} s\")\n",
" print(\n",
" \"================================================================================================================================================================\"\n",
" )"
3 months ago
]
},
{
"cell_type": "code",
"execution_count": null,
3 months ago
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
2 months ago
"Rotations done perpendicular to quantization axis. Elapsed time: 2460.81759 s\n",
"================================================================================================================================================================\n"
]
}
],
3 months ago
"source": [
"# this will contain the three hamiltonians in the reference directions needed to calculate the energy variations upon rotation\n",
3 months ago
"hamiltonians = []\n",
3 months ago
"\n",
3 months ago
"# iterate over the reference directions (quantization axes)\n",
"for i, orient in enumerate(simulation_parameters[\"ref_xcf_orientations\"]):\n",
" # obtain rotated exchange field\n",
" R = RotMa2b(simulation_parameters[\"scf_xcf_orientation\"], orient[\"o\"])\n",
" rot_XCF = np.einsum(\"ij,jklm->iklm\", R, XCF)\n",
" rot_H_XCF = sum(\n",
" [np.kron(rot_XCF[i], tau) for i, tau in enumerate([tau_x, tau_y, tau_z])]\n",
" )\n",
3 months ago
" rot_H_XCF_uc = rot_H_XCF[uc_in_sc_idx]\n",
"\n",
3 months ago
" # obtain total Hamiltonian with the rotated exchange field\n",
" rot_H = hTRS + rot_H_XCF # equation 76\n",
3 months ago
"\n",
" hamiltonians.append(\n",
" dict(\n",
" orient=orient[\"o\"],\n",
" H=rot_H,\n",
" GS=np.zeros(\n",
" (simulation_parameters[\"eset\"], rot_H.shape[1], rot_H.shape[2]),\n",
" dtype=\"complex128\",\n",
" ),\n",
" GS_tmp=np.zeros(\n",
" (simulation_parameters[\"eset\"], rot_H.shape[1], rot_H.shape[2]),\n",
" dtype=\"complex128\",\n",
" ),\n",
" )\n",
" ) # store orientation and rotated Hamiltonian\n",
"\n",
" # these are the rotations (for now) perpendicular to the quantization axis\n",
" for u in orient[\"vw\"]:\n",
" Tu = np.kron(np.eye(NO, dtype=int), tau_u(u)) # section 2.H\n",
3 months ago
"\n",
" Vu1, Vu2 = calc_Vu(rot_H_XCF_uc, Tu)\n",
3 months ago
"\n",
3 months ago
" for mag_ent in magnetic_entities:\n",
" idx = mag_ent[\"spin_box_indeces\"]\n",
" # fill up the perturbed potentials (for now) based on the on-site projections\n",
" mag_ent[\"Vu1\"][i].append(Vu1[:, idx][idx, :])\n",
" mag_ent[\"Vu2\"][i].append(Vu2[:, idx][idx, :])\n",
"\n",
"if rank == root_node:\n",
" times[\"reference_rotations_time\"] = timer()\n",
" print(\n",
" f\"Rotations done perpendicular to quantization axis. Elapsed time: {times['reference_rotations_time']} s\"\n",
" )\n",
" print(\n",
" \"================================================================================================================================================================\"\n",
" )"
3 months ago
]
},
{
"cell_type": "code",
"execution_count": null,
3 months ago
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Starting matrix inversions.\n",
"Total number of k points: 9\n",
"Number of energy samples per k point: 300\n",
"Total number of directions: 3\n",
"Total number of matrix inversions: 8100\n",
"The shape of the Hamiltonian and the Greens function is 84x84=7056\n",
"Memory taken by a single Hamiltonian is: 0.015625 KB\n",
"Expected memory usage per matrix inversion: 0.5 KB\n",
"Expected memory usage per k point for parallel inversion: 450.0 KB\n",
"Expected memory usage on root node: 3.955078125 MB\n",
"================================================================================================================================================================\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"k loop: 100%|██████████| 9/9 [00:31<00:00, 3.50s/it]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Calculated Greens functions. Elapsed time: 34.685783333 s\n",
"================================================================================================================================================================\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
3 months ago
"source": [
3 months ago
"if rank == root_node:\n",
" print(\"Starting matrix inversions.\")\n",
" print(f\"Total number of k points: {kset.shape[0]}\")\n",
" print(f\"Number of energy samples per k point: {simulation_parameters['eset']}\")\n",
" print(f\"Total number of directions: {len(hamiltonians)}\")\n",
" print(\n",
" f\"Total number of matrix inversions: {kset.shape[0] * len(hamiltonians) * simulation_parameters['eset']}\"\n",
" )\n",
" print(f\"The shape of the Hamiltonian and the Greens function is {NO}x{NO}={NO*NO}\")\n",
" # https://stackoverflow.com/questions/70746660/how-to-predict-memory-requirement-for-np-linalg-inv\n",
" # memory is O(64 n**2) for complex matrices\n",
" memory_size = getsizeof(hamiltonians[0][\"H\"].base) / 1024\n",
" print(\n",
" f\"Memory taken by a single Hamiltonian is: {getsizeof(hamiltonians[0]['H'].base) / 1024} KB\"\n",
" )\n",
" print(f\"Expected memory usage per matrix inversion: {memory_size * 32} KB\")\n",
" print(\n",
" f\"Expected memory usage per k point for parallel inversion: {memory_size * len(hamiltonians) * simulation_parameters['eset'] * 32} KB\"\n",
" )\n",
" print(\n",
" f\"Expected memory usage on root node: {len(np.array_split(kset, size)[0]) * memory_size * len(hamiltonians) * simulation_parameters['eset'] * 32 / 1024} MB\"\n",
" )\n",
" print(\n",
" \"================================================================================================================================================================\"\n",
" )\n",
"\n",
3 months ago
"comm.Barrier()\n",
"# ----------------------------------------------------------------------\n",
3 months ago
"\n",
"# make energy contour\n",
3 months ago
"# we are working in eV now !\n",
"# and sisl shifts E_F to 0 !\n",
"cont = make_contour(\n",
" emin=simulation_parameters[\"ebot\"],\n",
" enum=simulation_parameters[\"eset\"],\n",
" p=simulation_parameters[\"esetp\"],\n",
")\n",
3 months ago
"eran = cont.ze\n",
"\n",
"# ----------------------------------------------------------------------\n",
3 months ago
"# sampling the integrand on the contour and the BZ\n",
"for k in kpcs[rank]:\n",
" wk = wkset[rank] # weight of k point in BZ integral\n",
" # iterate over reference directions\n",
" for i, hamiltonian_orientation in enumerate(hamiltonians):\n",
" # calculate Greens function\n",
3 months ago
" H = hamiltonian_orientation[\"H\"]\n",
" HK, SK = hsk(H, ss, dh.sc_off, k)\n",
"\n",
" # solve Greens function sequentially for the energies, because of memory bound\n",
" Gk = sequential_GK(HK, SK, eran, simulation_parameters[\"eset\"])\n",
"\n",
" # saving this for total charge\n",
" hamiltonian_orientation[\"GS_tmp\"] += Gk @ SK * wk\n",
"\n",
3 months ago
" # store the Greens function slice of the magnetic entities (for now) based on the on-site projections\n",
" for mag_ent in magnetic_entities:\n",
" mag_ent[\"Gii_tmp\"][i] += (\n",
" Gk[:, mag_ent[\"spin_box_indeces\"], :][:, :, mag_ent[\"spin_box_indeces\"]]\n",
" * wk\n",
" )\n",
3 months ago
"\n",
" for pair in pairs:\n",
" # add phase shift based on the cell difference\n",
" phase = np.exp(1j * 2 * np.pi * k @ pair[\"Ruc\"].T)\n",
"\n",
3 months ago
" # get the pair orbital sizes from the magnetic entities\n",
" ai = magnetic_entities[pair[\"ai\"]][\"spin_box_indeces\"]\n",
" aj = magnetic_entities[pair[\"aj\"]][\"spin_box_indeces\"]\n",
"\n",
" # store the Greens function slice of the magnetic entities (for now) based on the on-site projections\n",
" pair[\"Gij_tmp\"][i] += Gk[:, ai][..., aj] * phase * wk\n",
" pair[\"Gji_tmp\"][i] += Gk[:, aj][..., ai] / phase * wk\n",
3 months ago
"\n",
"# summ reduce partial results of mpi nodes\n",
"for i in range(len(hamiltonians)):\n",
" # for total charge\n",
" comm.Reduce(hamiltonians[i][\"GS_tmp\"], hamiltonians[i][\"GS\"], root=root_node)\n",
"\n",
3 months ago
" for mag_ent in magnetic_entities:\n",
" comm.Reduce(mag_ent[\"Gii_tmp\"][i], mag_ent[\"Gii\"][i], root=root_node)\n",
3 months ago
"\n",
3 months ago
" for pair in pairs:\n",
" comm.Reduce(pair[\"Gij_tmp\"][i], pair[\"Gij\"][i], root=root_node)\n",
" comm.Reduce(pair[\"Gji_tmp\"][i], pair[\"Gji\"][i], root=root_node)\n",
"\n",
"if rank == root_node:\n",
" times[\"green_function_inversion_time\"] = timer()\n",
" print(\n",
" f\"Calculated Greens functions. Elapsed time: {times['green_function_inversion_time']} s\"\n",
" )\n",
" print(\n",
" \"================================================================================================================================================================\"\n",
" )"
3 months ago
]
},
{
"cell_type": "code",
"execution_count": null,
3 months ago
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total charge: 39.98745949985201\n",
"Total charge: 39.987459508326964\n",
"Total charge: 40.098563331816784\n",
"Magnetic entities integrated.\n",
"Pairs integrated.\n",
"Magnetic parameters calculated.\n",
"##################################################################### GROGU OUTPUT #############################################################################\n",
"================================================================================================================================================================\n",
"Input file: \n",
"/Users/danielpozsar/Downloads/nojij/Fe3GeTe2/monolayer/soc/lat3_791/Fe3GeTe2.fdf\n",
"Output file: \n",
"./Fe3GeTe2_notebook.pickle\n",
"Number of nodes in the parallel cluster: 1\n",
"================================================================================================================================================================\n",
"Cell [Ang]: \n",
"[[ 3.79100000e+00 0.00000000e+00 0.00000000e+00]\n",
" [-1.89550000e+00 3.28310231e+00 0.00000000e+00]\n",
" [ 1.25954923e-15 2.18160327e-15 2.05700000e+01]]\n",
"================================================================================================================================================================\n",
"DFT axis: \n",
"[0 0 1]\n",
"Quantization axis and perpendicular rotation directions:\n",
"[1 0 0] --» [array([0, 1, 0]), array([0, 0, 1])]\n",
"[0 1 0] --» [array([1, 0, 0]), array([0, 0, 1])]\n",
"[0 0 1] --» [array([1, 0, 0]), array([0, 1, 0])]\n",
"================================================================================================================================================================\n",
"Parameters for the contour integral:\n",
"Number of k points: 3\n",
"k point directions: xy\n",
"Ebot: -13\n",
"Eset: 300\n",
"Esetp: 1000\n",
"================================================================================================================================================================\n",
"Atomic information: \n",
"----------------------------------------------------------------------------------------------------------------------------------------------------------------\n",
"[atom index]Element(orbitals) x [Ang] y [Ang] z [Ang] Sx Sy Sz Q Lx Ly Lz Jx Jy Jz\n",
"----------------------------------------------------------------------------------------------------------------------------------------------------------------\n",
"[3]Fe(2) -7.339158738013707e-06 4.149278510690423e-06 11.657585837928032\n",
"\n",
"[4]Fe(2) -7.326987662162937e-06 4.158274523275774e-06 8.912422537596708\n",
"\n",
"[5]Fe(2) 1.8954667088117545 1.0943913231921656 10.285002698393109\n",
"\n",
"================================================================================================================================================================\n",
"Anisotropy [meV]\n",
"----------------------------------------------------------------------------------------------------------------------------------------------------------------\n",
"Magnetic entity x [Ang] y [Ang] z [Ang]\n",
"----------------------------------------------------------------------------------------------------------------------------------------------------------------\n",
"[3]Fe(2) -7.339158738013707e-06 4.149278510690423e-06 11.657585837928032\n",
"Consistency check: 2.3860081328264116e-05\n",
"Anisotropy diag: [0.02546754 0.00208022 0. ]\n",
"\n",
"[4]Fe(2) -7.326987662162937e-06 4.158274523275774e-06 8.912422537596708\n",
"Consistency check: 7.768349833381372e-05\n",
"Anisotropy diag: [-0.06673164 0.01049614 0. ]\n",
"\n",
"[5]Fe(2) 1.8954667088117545 1.0943913231921656 10.285002698393109\n",
"Consistency check: 1.2052892692793193e-06\n",
"Anisotropy diag: [-0.01943729 -0.0206467 0. ]\n",
"\n",
"================================================================================================================================================================\n",
"Exchange [meV]\n",
"----------------------------------------------------------------------------------------------------------------------------------------------------------------\n",
"Magnetic entity1 Magnetic entity2 [i j k] d [Ang]\n",
"----------------------------------------------------------------------------------------------------------------------------------------------------------------\n",
"[3]Fe(2) [4]Fe(2) [0 0 0] d [Ang] 2.745163300331324\n",
"Isotropic: -39.96748066866786\n",
"DMI: [-4.16373454e-04 -8.52759845e-04 2.22666054e-07]\n",
"Symmetric-anisotropy: [ 7.85170293e-01 -2.01786552e-05 -2.73439476e-07 -2.01786552e-05\n",
" 7.85623794e-01 -9.79265975e-07 -2.73439476e-07 -9.79265975e-07\n",
" -1.57079409e+00]\n",
"J: [-3.91823104e+01 -2.01786552e-05 -2.73439476e-07 -2.01786552e-05\n",
" -3.91818569e+01 -9.79265975e-07 -2.73439476e-07 -9.79265975e-07\n",
" -4.15382748e+01]\n",
"Energies for debugging: \n",
"[[-4.15381735e-02 -4.15394188e-07 4.17352720e-07 -4.17291610e-02]\n",
" [-4.15383760e-02 8.53033284e-07 -8.52486405e-07 -4.17300740e-02]\n",
" [-3.66345528e-02 2.04013212e-08 1.99559891e-08 -3.66345467e-02]]\n",
"J_ii for debugging: (check if this is the same as in calculate_exchange_tensor)\n",
"[-0.04173007 -0.03663455 -0.04153817]\n",
"Test J_xx = E(y,z) = E(z,y)\n",
"-0.04173007401441678 -0.036634546737597175\n",
"\n",
"[3]Fe(2) [5]Fe(2) [0 0 0] d [Ang] 2.5835033632437767\n",
"Isotropic: -54.8678926276239\n",
"DMI: [ 8.10240490e-01 -1.36608099e+00 3.25215454e-05]\n",
"Symmetric-anisotropy: [ 0.12903943 0.14426756 -0.06549931 0.14426756 -0.20896588 -0.05975815\n",
" -0.06549931 -0.05975815 0.07992645]\n",
"J: [-54.7388532 0.14426756 -0.06549931 0.14426756 -55.07685851\n",
" -0.05975815 -0.06549931 -0.05975815 -54.78796617]\n",
"Energies for debugging: \n",
"[[-0.05497624 0.00087 -0.00075048 -0.0552075 ]\n",
" [-0.0545997 0.00143158 -0.00130058 -0.05469815]\n",
" [-0.05494622 -0.00014424 -0.0001443 -0.05477956]]\n",
"J_ii for debugging: (check if this is the same as in calculate_exchange_tensor)\n",
"[-0.05469815 -0.05494622 -0.05497624]\n",
"Test J_xx = E(y,z) = E(z,y)\n",
"-0.05469814671520505 -0.05477955968564471\n",
"\n",
"[4]Fe(2) [5]Fe(2) [0 0 0] d [Ang] 2.583501767937866\n",
"Isotropic: -54.86287528016134\n",
"DMI: [-8.08522805e-01 1.36388593e+00 3.14077512e-05]\n",
"Symmetric-anisotropy: [ 0.12501449 0.14426595 0.05678873 0.14426595 -0.20956489 0.04990479\n",
" 0.05678873 0.04990479 0.08455041]\n",
"J: [-5.47378608e+01 1.44265952e-01 5.67887254e-02 1.44265952e-01\n",
" -5.50724402e+01 4.99047869e-02 5.67887254e-02 4.99047869e-02\n",
" -5.47783249e+01]\n",
"Energies for debugging: \n",
"[[-0.05496666 -0.00085843 0.00075862 -0.05519787]\n",
" [-0.05458999 -0.00142067 0.0013071 -0.05469537]\n",
" [-0.05494701 -0.00014423 -0.0001443 -0.05478035]]\n",
"J_ii for debugging: (check if this is the same as in calculate_exchange_tensor)\n",
"[-0.05469537 -0.05494701 -0.05496666]\n",
"Test J_xx = E(y,z) = E(z,y)\n",
"-0.054695368426152975 -0.05478035315936865\n",
"\n",
"[3]Fe(2) [5]Fe(2) [-1 -1 0] d [Ang] 2.5834973202859075\n",
"Isotropic: -54.86725213337313\n",
"DMI: [-1.55587908e+00 1.48356799e-05 -4.55339161e-05]\n",
"Symmetric-anisotropy: [-3.76175058e-01 -2.58204985e-05 -2.58761719e-05 -2.58204985e-05\n",
" 2.92919450e-01 4.97693839e-02 -2.58761719e-05 4.97693839e-02\n",
" 8.32556083e-02]\n",
"J: [-5.52434272e+01 -2.58204985e-05 -2.58761719e-05 -2.58204985e-05\n",
" -5.45743327e+01 4.97693839e-02 -2.58761719e-05 4.97693839e-02\n",
" -5.47839965e+01]\n",
"Energies for debugging: \n",
"[[-5.44093670e-02 -1.60564846e-03 1.50610969e-03 -5.44511949e-02]\n",
" [-5.51586260e-02 1.10404920e-08 4.07118518e-08 -5.54561691e-02]\n",
" [-5.46974705e-02 -1.97134176e-08 7.13544147e-08 -5.50306852e-02]]\n",
"J_ii for debugging: (check if this is the same as in calculate_exchange_tensor)\n",
"[-0.05545617 -0.05469747 -0.05440937]\n",
"Test J_xx = E(y,z) = E(z,y)\n",
"-0.0554561691350627 -0.05503068524779923\n",
"\n",
"[4]Fe(2) [5]Fe(2) [-1 -1 0] d [Ang] 2.583495745338251\n",
"Isotropic: -54.87173513590157\n",
"DMI: [ 1.55588615e+00 -3.50135692e-04 -4.46128995e-05]\n",
"Symmetric-anisotropy: [-3.79737241e-01 -2.60848380e-05 -4.45024497e-05 -2.60848380e-05\n",
" 2.96608300e-01 -4.97778119e-02 -4.45024497e-05 -4.97778119e-02\n",
" 8.31289413e-02]\n",
"J: [-5.52514724e+01 -2.60848380e-05 -4.45024497e-05 -2.60848380e-05\n",
" -5.45751268e+01 -4.97778119e-02 -4.45024497e-05 -4.97778119e-02\n",
" -5.47886062e+01]\n",
"Energies for debugging: \n",
"[[-5.44101654e-02 1.60566396e-03 -1.50610834e-03 -5.44519935e-02]\n",
" [-5.51670469e-02 3.94638142e-07 -3.05633242e-07 -5.54714740e-02]\n",
" [-5.46982601e-02 -1.85280615e-08 7.06977375e-08 -5.50314708e-02]]\n",
"J_ii for debugging: (check if this is the same as in calculate_exchange_tensor)\n",
"[-0.05547147 -0.05469826 -0.05441017]\n",
"Test J_xx = E(y,z) = E(z,y)\n",
"-0.05547147397315911 -0.05503147078078048\n",
"\n",
"[3]Fe(2) [5]Fe(2) [-1 0 0] d [Ang] 2.583541444641373\n",
"Isotropic: -54.8543539372674\n",
"DMI: [8.08531830e-01 1.36653494e+00 1.23153243e-05]\n",
"Symmetric-anisotropy: [ 0.12565256 -0.14422424 0.06554219 -0.14422424 -0.2071834 -0.04991746\n",
" 0.06554219 -0.04991746 0.08153084]\n",
"J: [-5.47287014e+01 -1.44224241e-01 6.55421872e-02 -1.44224241e-01\n",
" -5.50615373e+01 -4.99174557e-02 6.55421872e-02 -4.99174557e-02\n",
" -5.47728231e+01]\n",
"Energies for debugging: \n",
"[[-0.0549559 0.00085845 -0.00075861 -0.05518723]\n",
" [-0.05458975 -0.00143208 0.00130099 -0.05468811]\n",
" [-0.05493584 0.00014424 0.00014421 -0.05476929]]\n",
"J_ii for debugging: (check if this is the same as in calculate_exchange_tensor)\n",
"[-0.05468811 -0.05493584 -0.0549559 ]\n",
"Test J_xx = E(y,z) = E(z,y)\n",
"-0.05468810820091341 -0.054769294557366933\n",
"\n",
"[4]Fe(2) [5]Fe(2) [-1 0 0] d [Ang] 2.5835398672184064\n",
"Isotropic: -54.85632586904892\n",
"DMI: [-8.10252027e-01 -1.36402738e+00 1.40111262e-05]\n",
"Symmetric-anisotropy: [ 0.12852618 -0.14422269 -0.05676095 -0.14422269 -0.21124941 0.05978565\n",
" -0.05676095 0.05978565 0.08272322]\n",
"J: [-54.72779968 -0.14422269 -0.05676095 -0.14422269 -55.06757527\n",
" 0.05978565 -0.05676095 0.05978565 -54.77360265]\n",
"Energies for debugging: \n",
"[[-0.05496711 -0.00087004 0.00075047 -0.0551985 ]\n",
" [-0.05458009 0.00142079 -0.00130727 -0.05468549]\n",
" [-0.05493665 0.00014424 0.00014421 -0.05477011]]\n",
"J_ii for debugging: (check if this is the same as in calculate_exchange_tensor)\n",
"[-0.05468549 -0.05493665 -0.05496711]\n",
"Test J_xx = E(y,z) = E(z,y)\n",
"-0.05468549220244033 -0.05477010716669793\n",
"\n",
"[4]Fe(2) [5]Fe(2) [-2 0 0] d [Ang] 5.951322298958084\n",
"Isotropic: 0.7670124122315716\n",
"DMI: [-2.53243316e-01 2.68939617e-04 -1.43892049e-04]\n",
"Symmetric-anisotropy: [ 8.10949387e-02 -1.65488077e-05 -4.52585019e-05 -1.65488077e-05\n",
" -3.13833695e-01 -2.50031263e-01 -4.52585019e-05 -2.50031263e-01\n",
" 2.32738756e-01]\n",
"J: [ 8.48107351e-01 -1.65488077e-05 -4.52585019e-05 -1.65488077e-05\n",
" 4.53178717e-01 -2.50031263e-01 -4.52585019e-05 -2.50031263e-01\n",
" 9.99751168e-01]\n",
"Energies for debugging: \n",
"[[ 1.27357111e-03 -3.21205279e-06 5.03274580e-04 6.56773632e-04]\n",
" [ 7.25931228e-04 -2.23681115e-07 3.14198119e-07 7.58339032e-04]\n",
" [ 2.49583803e-04 -1.27343241e-07 1.60440856e-07 9.37875670e-04]]\n",
"J_ii for debugging: (check if this is the same as in calculate_exchange_tensor)\n",
"[0.00075834 0.00024958 0.00127357]\n",
"Test J_xx = E(y,z) = E(z,y)\n",
"0.0007583390322003737 0.0009378756696001232\n",
"\n",
"[4]Fe(2) [5]Fe(2) [-3 0 0] d [Ang] 9.638732176310562\n",
"Isotropic: -54.86287528016134\n",
"DMI: [-8.08522805e-01 1.36388593e+00 3.14077512e-05]\n",
"Symmetric-anisotropy: [ 0.12501449 0.14426595 0.05678873 0.14426595 -0.20956489 0.04990479\n",
" 0.05678873 0.04990479 0.08455041]\n",
"J: [-5.47378608e+01 1.44265952e-01 5.67887254e-02 1.44265952e-01\n",
" -5.50724402e+01 4.99047869e-02 5.67887254e-02 4.99047869e-02\n",
" -5.47783249e+01]\n",
"Energies for debugging: \n",
"[[-0.05496666 -0.00085843 0.00075862 -0.05519787]\n",
" [-0.05458999 -0.00142067 0.0013071 -0.05469537]\n",
" [-0.05494701 -0.00014423 -0.0001443 -0.05478035]]\n",
"J_ii for debugging: (check if this is the same as in calculate_exchange_tensor)\n",
"[-0.05469537 -0.05494701 -0.05496666]\n",
"Test J_xx = E(y,z) = E(z,y)\n",
"-0.05469536842615297 -0.05478035315936865\n",
"\n",
"================================================================================================================================================================\n",
"Runtime information: \n",
"Total runtime: 32.859570917000006 s\n",
"----------------------------------------------------------------------------------------------------------------------------------------------------------------\n",
"Initial setup: 0.10918341700000012 s\n",
"Hamiltonian conversion and XC field extraction: 0.612 s\n",
"Pair and site datastructure creatrions: 0.030 s\n",
"k set cration and distribution: 0.030 s\n",
"Rotating XC potential: 0.278 s\n",
"Greens function inversion: 31.432 s\n",
"Calculate energies and magnetic components: 0.368 s\n"
]
}
],
3 months ago
"source": [
"if rank == root_node:\n",
" # Calculate total charge\n",
" for hamiltonian in hamiltonians:\n",
" GS = hamiltonian[\"GS\"]\n",
" traced = np.trace((GS), axis1=1, axis2=2)\n",
" print(\"Total charge: \", int_de_ke(traced, cont.we))\n",
"\n",
" # iterate over the magnetic entities\n",
" for tracker, mag_ent in enumerate(magnetic_entities):\n",
" # iterate over the quantization axes\n",
" for i, Gii in enumerate(mag_ent[\"Gii\"]):\n",
" storage = []\n",
" # iterate over the first and second order local perturbations\n",
" for Vu1, Vu2 in zip(mag_ent[\"Vu1\"][i], mag_ent[\"Vu2\"][i]):\n",
3 months ago
" # The Szunyogh-Lichtenstein formula\n",
" traced = np.trace((Vu2 @ Gii + 0.5 * Gii @ Vu1 @ Gii), axis1=1, axis2=2)\n",
3 months ago
" # evaluation of the contour integral\n",
" storage.append(int_de_ke(traced, cont.we))\n",
"\n",
" # fill up the magnetic entities dictionary with the energies\n",
" magnetic_entities[tracker][\"energies\"].append(storage)\n",
" # convert to np array\n",
" magnetic_entities[tracker][\"energies\"] = np.array(\n",
" magnetic_entities[tracker][\"energies\"]\n",
" )\n",
" print(\"Magnetic entities integrated.\")\n",
"\n",
" # iterate over the pairs\n",
" for tracker, pair in enumerate(pairs):\n",
" # iterate over the quantization axes\n",
" for i, (Gij, Gji) in enumerate(zip(pair[\"Gij\"], pair[\"Gji\"])):\n",
" site_i = magnetic_entities[pair[\"ai\"]]\n",
" site_j = magnetic_entities[pair[\"aj\"]]\n",
"\n",
" storage = []\n",
" # iterate over the first order local perturbations in all possible orientations for the two sites\n",
" for Vui in site_i[\"Vu1\"][i]:\n",
" for Vuj in site_j[\"Vu1\"][i]:\n",
" # The Szunyogh-Lichtenstein formula\n",
" traced = np.trace((Vui @ Gij @ Vuj @ Gji), axis1=1, axis2=2)\n",
" # evaluation of the contour integral\n",
" storage.append(int_de_ke(traced, cont.we))\n",
" # fill up the pairs dictionary with the energies\n",
" pairs[tracker][\"energies\"].append(storage)\n",
" # convert to np array\n",
" pairs[tracker][\"energies\"] = np.array(pairs[tracker][\"energies\"])\n",
"\n",
" print(\"Pairs integrated.\")\n",
"\n",
" # calculate magnetic parameters\n",
" for mag_ent in magnetic_entities:\n",
" Kxx, Kyy, Kzz, consistency = calculate_anisotropy_tensor(mag_ent)\n",
" mag_ent[\"K\"] = np.array([Kxx, Kyy, Kzz]) * sisl.unit_convert(\"eV\", \"meV\")\n",
" mag_ent[\"K_consistency\"] = consistency\n",
"\n",
" for pair in pairs:\n",
" J_iso, J_S, D, J = calculate_exchange_tensor(pair)\n",
" pair[\"J_iso\"] = J_iso * sisl.unit_convert(\"eV\", \"meV\")\n",
" pair[\"J_S\"] = J_S * sisl.unit_convert(\"eV\", \"meV\")\n",
" pair[\"D\"] = D * sisl.unit_convert(\"eV\", \"meV\")\n",
" pair[\"J\"] = J * sisl.unit_convert(\"eV\", \"meV\")\n",
"\n",
" print(\"Magnetic parameters calculated.\")\n",
"\n",
" times[\"end_time\"] = timer()\n",
" print(\n",
" \"##################################################################### GROGU OUTPUT #############################################################################\"\n",
" )\n",
"\n",
" print_parameters(simulation_parameters)\n",
" print_atoms_and_pairs(magnetic_entities, pairs)\n",
" print_runtime_information(times)\n",
"\n",
" pairs, magnetic_entities = remove_clutter_for_save(pairs, magnetic_entities)\n",
" # create output dictionary with all the relevant data\n",
" results = dict(\n",
" parameters=simulation_parameters,\n",
" magnetic_entities=magnetic_entities,\n",
" pairs=pairs,\n",
" runtime=times,\n",
" )\n",
"\n",
" save_pickle(simulation_parameters[\"outfile\"], results)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"ename": "SyntaxError",
"evalue": "invalid syntax (3105939143.py, line 1)",
"output_type": "error",
"traceback": [
"\u001b[0;36m Cell \u001b[0;32mIn[9], line 1\u001b[0;36m\u001b[0m\n\u001b[0;31m ========================================\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n"
]
}
],
"source": [
"========================================\n",
" \n",
"Atom Angstrom\n",
"# Label, x y z Sx Sy Sz #Q Lx Ly Lz Jx Jy Jz\n",
"--------------------------------------------------------------------------------------------------------------------------------------------------------------------------\n",
"Te1 1.8955 1.0943 13.1698 -0.0000 0.0000 -0.1543 # 5.9345 -0.0000 0.0000 -0.0537 -0.0000 0.0000 -0.2080 \n",
"Te2 1.8955 1.0943 7.4002 0.0000 -0.0000 -0.1543 # 5.9345 0.0000 -0.0000 -0.0537 0.0000 -0.0000 -0.2080 \n",
"Ge3 -0.0000 2.1887 10.2850 0.0000 0.0000 -0.1605 # 3.1927 -0.0000 0.0000 0.0012 0.0000 0.0000 -0.1593 \n",
"Fe4 -0.0000 0.0000 11.6576 0.0001 -0.0001 2.0466 # 8.3044 0.0000 -0.0000 0.1606 0.0001 -0.0001 2.2072 \n",
"Fe5 -0.0000 0.0000 8.9124 -0.0001 0.0001 2.0466 # 8.3044 -0.0000 0.0000 0.1606 -0.0001 0.0001 2.2072 \n",
"Fe6 1.8955 1.0944 10.2850 0.0000 0.0000 1.5824 # 8.3296 -0.0000 -0.0000 0.0520 -0.0000 0.0000 1.6344 \n",
"==================================================================================================================================\n",
" \n",
"Exchange meV\n",
"--------------------------------------------------------------------------------\n",
"# at1 at2 i j k # d (Ang)\n",
"--------------------------------------------------------------------------------\n",
"Fe4 Fe5 0 0 0 # 2.7452\n",
"Isotropic -82.0854\n",
"DMI 0.12557 -0.00082199 6.9668e-08\n",
"Symmetric-anisotropy -0.60237 -0.83842 -0.00032278 -1.2166e-05 -3.3923e-05\n",
"--------------------------------------------------------------------------------\n",
"Fe4 Fe6 0 0 0 # 2.5835\n",
"Isotropic -41.9627\n",
"DMI 1.1205 -1.9532 0.0018386\n",
"Symmetric-anisotropy 0.26007 -0.00013243 0.12977 -0.069979 -0.042066\n",
"--------------------------------------------------------------------------------\n",
"\n",
"\n",
"On-site meV\n",
"----------------------------------------\n",
"Fe4\n",
"0.16339\t0.16068\t0\t0\t0\t0\n",
"========================================\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
3 months ago
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
3 months ago
}
},
"nbformat": 4,
"nbformat_minor": 2
}